NeuroImage
-
Although numerous behavioural studies provide evidence that there exist wide differences within individual motor imagery (MI) abilities, little is known with regards to the functional neuroanatomical networks that dissociate someone with good versus poor MI capacities. For the first time, we thus compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 13 skilled and 15 unskilled imagers during both physical execution and MI of a sequence of finger movements. Differences in MI abilities were assessed using well-established questionnaire and chronometric measures, as well as a new index based upon the subject's peripheral responses from the autonomic nervous system. ⋯ In: Squire, L. R., Schacter, D. L. (Eds.), Neuropsychology of memory, Guilford Press, pp. 225-238], our results demonstrate that compared to skilled imagers, poor imagers not only need to recruit the cortico-striatal system, but to compensate with the cortico-cerebellar system during MI of sequential movements.
-
Thermal and nociceptive cutaneous stimuli activate the brain via two types of nerve fibers, slightly myelinated Adelta-fibers with moderate conduction velocity and unmyelinated C-fibers with slow conduction velocity. Differences in central processing upon selective stimulation of these two fiber types in healthy human subjects still remain poorly understood. ⋯ Besides similar activation in several brain areas in response to both kinds of stimulation, we observed pronounced brain activation to selective C-fiber stimulation as compared to Adelta-fiber stimulation in the right frontal operculum and anterior insula. Based on a putative function of these structures we suggest that the C-fiber system might be engaged in homeostatic and interoceptive functions in a manner other than the Adelta-fiber system, producing a signal of greater emotional salience.
-
Oscillatory and coherent EEG activity is increasingly recognized as a fundamental hallmark of cortical integrative functions. We aimed to study deviations from the norm of different resting EEG parameters in Parkinson's disease (PD) patients. We compared spectral parameters of the resting EEG of PD patients (n=24, median age 67 years) to those of healthy controls (n=34, median age 62 years). ⋯ In the parietal ROI, patients showed lower coherence around 10 Hz. We demonstrate a deviation from the norm of different resting EEG parameters in PD patients. This evidence can be integrated in the context of a pathophysiological chain reaction initiated in the substantia nigra and resulting in a cortical aberrant dynamics rooted in enhanced dysrhythmic thalamocortical interactions.
-
Within-subject analysis in fMRI essentially addresses two problems, i.e., the detection of activated brain regions in response to an experimental task and the estimation of the underlying dynamics, also known as the characterisation of Hemodynamic response function (HRF). So far, both issues have been treated sequentially while it is known that the HRF model has a dramatic impact on the localisation of activations and that the HRF shape may vary from one region to another. In this paper, we conciliate both issues in a region-based joint detection-estimation framework that we develop in the Bayesian formalism. ⋯ Bayesian model comparison allows us to emphasize on artificial datasets first that inhomogeneous gamma-Gaussian mixture models outperform Gaussian mixtures in terms of sensitivity/specificity trade-off and second that it is worthwhile modelling serial correlation through an AR(1) noise process at low signal-to-noise (SNR) ratio. Our approach is then validated on an fMRI experiment that studies habituation to auditory sentence repetition. This phenomenon is clearly recovered as well as the hierarchical temporal organisation of the superior temporal sulcus, which is directly derived from the parcel-based HRF estimates.
-
The signal source of apparent diffusion coefficient (ADC) changes induced by neural activity is not fully understood. To examine this issue, ADC-fMRI in response to a visual stimulus was obtained in isoflurane-anesthetized cats at 9.4 T. A gradient-echo technique was used for minimizing the coupling between diffusion and background field gradients, which was experimentally confirmed. ⋯ Within the parenchyma, the ADC decrease responded faster than the BOLD signal, but was not well localized to the middle of visual cortex and almost disappeared when the intravascular signal was removed with a susceptibility contrast agent, suggesting that the decrease in ADC without contrast agent was mostly of vascular origin. At the cortical surface, an average ADC decrease of 0.5% remained after injection of the contrast agent, which may have arisen from a functional reduction of the partial volume of cerebrospinal fluid. Overall, a functional ADC change of tissue origin could not be detected under our experimental conditions.