NeuroImage
-
Recently, there has been strong interest in the development of imaging techniques to quantify axonal and myelin pathology in patients with multiple sclerosis (MS). Optic neuritis, a condition characterised by inflammatory demyelination of the optic nerve, is one of the commonest sites of MS relapse, and exhibits similar pathological alterations to MS lesions elsewhere in the central nervous system (CNS). Unlike other regions of the CNS, however, the function of the optic nerve can be accurately assessed using clinical measures, as well as electrophysiological techniques such as visual evoked potential recordings. ⋯ To further investigate this disassociation, we used linear regression analysis with optic nerve atrophy and optic nerve FA as independent variables and mfVEP amplitude as the dependent variable. The resulting linear regression model was highly significant (R=0.819, p=0.001). These results show that, 4 years after unilateral optic neuritis, MRI-based measures of optic nerve structural abnormalities (decreased anisotropy and volume) independently predict visual dysfunction.
-
Randomized Controlled Trial
Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia.
Recent advances in placebo research have demonstrated the mind's power to alter physiology. In this study, we combined an expectancy manipulation model with both verum and sham acupuncture treatments to address: 1) how and to what extent treatment and expectancy effects - including both subjective pain intensity levels (pain sensory ratings) and objective physiological activations (fMRI) - interact; and 2) if the underlying mechanism of expectancy remains the same whether placebo treatment is given alone or in conjunction with active treatment. ⋯ We believe our study provides brain imaging evidence for the existence of different mechanisms underlying acupuncture analgesia and expectancy evoked placebo analgesia. Our results also suggest that the brain network involved in expectancy may vary under different treatment situations (verum and sham acupuncture treatment).
-
Magnetic resonance (MR) based shape analysis provides an opportunity to detect regional specificity of volumetric changes that may distinguish mild cognitive impairment (MCI) and Alzheimer's disease (AD) from healthy elderly controls (CON), and predict future conversion to AD. We assessed the surface deformation of seven structures (amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, body and temporal horn of the lateral ventricles) in 383 MRI volumes, based on data shared through the publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI), to identify regionally-specific shape abnormalities in MCI and AD. Large deformation diffeomorphic metric mapping (LDDMM) was used to generate the shapes of seven structures based on template shapes injected into segmented subcortical volumes. ⋯ Most pronounced surface outward-deformation in MCI and AD occurs in the lateral ventricles. Mild surface inward-deformation in MCI and AD occurs in the anterior-lateral and ventral-lateral aspects of the thalamus, with no evidence of regionally-specific deformation in the putamen or globus pallidus. Although the locations of the shape abnormalities in MCI and AD are primarily within the mesial temporal region, analyses support distinct components of correlated shape variation that may help predict future MCI conversion.
-
Pain is a complex experience with sensory, emotional and cognitive aspects. The cortical representation of pain - the pain matrix - consists of a network of regions including the primary (S1) and secondary (S2) sensory cortex, insula, and anterior cingulate cortex (ACC). These structures interact with brain regions such as the prefrontal cortex and the amygdalae. ⋯ This modeling strategy yielded pronounced activation in the ACC, right amygdala and thalamus. Our results suggest that laser-evoked potential (LEP) informed fMRI can be used to visualize BOLD activation in the pain matrix with an emphasis on functional compartments (as defined by the temporal dynamics of the LEP) such as the medial pain system. Furthermore, our findings suggest a concerted effort of the ACC and the amygdala in the cognitive-emotional evaluation of pain.