NeuroImage
-
Pain is a sensory and emotional experience that involves numerous brain areas. Among these areas the insular cortex has been shown to be involved in the expectation and processing of pain. Alpha power modulation has been associated with the experience of pain. ⋯ The results revealed that the anterior insula alone was involved during the threat of painful stimuli. Conversely, the posterior insula - as well as other brain areas such as SII - was involved in the processing of somatosensory stimuli regardless their painfulness. Additionally, the involvement of the anterior insula should not be accounted for by fear, arousal, habituation effect or by the occurrence of randomly interleaved different stimuli, but it is likely to be related mainly to expectancy mechanisms enhancing activity of specific neuronal populations.
-
We explored the effect of unilateral intracarotid sodium amobarbital injection during the Wada test (intra-arterial amobarbital procedure, IAP) on functional connectivity in the brain assessed by synchronization analysis of the EEG. Patients suffering from pharmaco-resistant epilepsy who were selected for epilepsy surgery and underwent a preoperative IAP to determine language dominance and contralateral memory capacity were eligible. All patients had brain abnormalities (mostly tumors) or mesial temporal sclerosis. ⋯ Synchronization consistently increases in the injected hemisphere. Functional connectivity in the contralateral hemisphere decreases in the lower frequency bands, while it tends to increase in the beta and gamma bands (depending on lesion lateralization). These results indicate that functional connectivity in both the injected as well as in the contralateral hemisphere is strongly influenced by the IAP.
-
MRI at 3 T has increased sensitivity in detecting overt multiple sclerosis (MS) brain lesions; a growing body of data suggests clinically relevant damage occurs in the normal-appearing white matter (NAWM). We tested a novel pulse sequence to determine whether 3 T MRI spin-spin relaxometry detected damage in NAWM of MS patients (n=13) vs. age-matched normal controls [(NL) (n=11)]. Baseline characteristics of the MS group were: age (mean+/-SD) 42.5+/-5.4 (range 33-51 years), disease duration 9.0+/-6.4 (range 1-22 years), Expanded Disability Status Scale score 2.5+/-1.7 (range 1-6.5). ⋯ However, the normalized WM volume fractions were similar in both MS and NL (p>0.1). This pilot study suggests that a novel 3D fast spin-echo pulse sequence at 3 T, used to derive R2 relaxation maps, can detect tissue damage in the global and regional cerebral NAWM of MS patients that is missed by conventional lesion and atrophy measures. Such findings may represent demyelination, inflammation, glial proliferation and axonal loss.
-
Although many studies are starting to use voxel-based analysis (VBA) methods to compare diffusion tensor images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on parameter settings and implementation strategies, such as the applied coregistration technique, smoothing kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge regarding the underlying microstructural alterations is required. To address the lack of such a gold standard, simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion properties of a predefined location. ⋯ We are convinced that the use of these simulated data sets can improve the understanding of how different diffusion tensor image post-processing techniques affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The simulated DTI data sets will be made available online (http://www.dti.ua.ac.be).
-
A fundamental and intensively discussed question is whether medial temporal lobe (MTL) processes that lead to non-associative item memories differ in their anatomical substrate from processes underlying associative memory formation. Using event-related functional magnetic resonance imaging, we implemented a novel design to dissociate brain activity related to item and associative memory formation not only by subsequent memory performance and anatomy but also in time, because the two constituents of each pair to be memorized were presented sequentially with an intra-pair delay of several seconds. Furthermore, the design enabled us to reduce potential differences in memory strength between item and associative memory by increasing task difficulty in the item recognition memory test. ⋯ Specific subsequent memory analyses for item and associative memory formation revealed brain activity that appears selectively related to item memory formation in the posterior inferior temporal, posterior parahippocampal, and perirhinal cortices. In contrast, hippocampal and inferior prefrontal activity predicted successful retrieval of newly formed inter-item associations. Our findings therefore suggest that different MTL subregions indeed play distinct roles in the formation of item memory and inter-item associative memory as expected by several dual process models of the MTL memory system.