NeuroImage
-
Comparative Study
Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data.
Resting-state fMRI provides a method to examine the functional network of the brain under spontaneous fluctuations. A number of studies have proposed using resting-state BOLD data to parcellate the brain into functional subunits. In this work, we present two state-of-the-art graph-based partitioning approaches, and investigate their application to the problem of brain network segmentation using resting-state fMRI. ⋯ Resting-state fMRI data were acquired from 43 healthy subjects, and the Ncut algorithm was used to parcellate several different cortical regions of interest. The group-wise delineation of the functional subunits based on resting-state fMRI was highly consistent with the parcellation results from two task-based fMRI studies (one with 18 subjects and the other with 20 subjects). The findings suggest that whole-brain parcellation of the cortex using resting-state fMRI is feasible, and that the Ncut algorithm provides the appropriate technique for this task.
-
The lateral surface of the right frontal lobe has a relevant role in modulating behavioral responses to aversive stimuli and may significantly influence pain experience. Imaging studies suggest that this modulatory role is multifaceted, but no studies have assessed the regional specialization of this cortex on the basis of its response dynamics during pain processing. We aimed to investigate functional specialization within the right lateral frontal cortex using a dynamic fMRI approach. ⋯ The anterior prefrontal cortex showed full activation during late painful stimulation and was negatively correlated with pain unpleasantness. In conclusion, different elements within the right lateral frontal cortex showed distinct activation dynamics in response to painful stimulation, which would suggest relevant regional specialization during pain processing. These findings are congruent with the broad functional role of the right frontal cortex and its influence on crucial aspects of human behavior.
-
Pain is a multidimensional experience. Human pain perception can be modulated by subjective emotional responses. We examined this association within the context of a neuroimaging study, using functional MRI to examine neural responses to electrical pain-inducing stimuli in 15 healthy subjects (6 females; age range=20-30 years). ⋯ We found that subjective pain ratings were higher in the sad emotional context than in the happy and neutral contexts, and that pain-related activation in the ACC was more pronounced in the sad context relative to the happy and neutral contexts. Psychophysiological interaction (PPI) and dynamic causal modeling (DCM) analyses demonstrated amygdala to ACC connections during the experience of pain in the sad context. These findings serve to highlight the neural mechanisms that may be relevant to understanding the broader relationship between somatic complaints and negative emotion.
-
Comparative Study
Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects.
Multimodal approaches are of growing interest in the study of neural processes. To this end much attention has been paid to the integration of electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data because of their complementary properties. However, the simultaneous acquisition of both types of data causes serious artifacts in the EEG, with amplitudes that may be much larger than those of EEG signals themselves. ⋯ Both OBS and ICA proved to be able to yield equally good results. However, ICA methods needed more parameter tuning, thereby making OBS more robust and easy to use. Moreover, applying OBS prior to ICA can optimize the data quality even more, but caution is recommended since the effect of the additional ICA step may be strongly subject-dependent.
-
Generalized tonic-clonic seizures cause widespread physiological changes throughout the cerebral cortex and subcortical structures in the brain. Using combined blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at 9.4 T and electroencephalography (EEG), these changes can be characterized with high spatiotemporal resolution. We studied BOLD changes in anesthetized Wistar rats during bicuculline-induced tonic-clonic seizures. ⋯ The largest ictal BOLD increases remained in the focal regions of somatosensory cortex showing pre-ictal increases. During the post-ictal period we observed widespread BOLD decreases. These findings support a model in which "generalized" tonic-clonic seizures begin with focal changes before electrographic seizure onset, which progress to non-uniform changes during seizures, possibly shedding light on the etiology and pathophysiology of similar seizures in humans.