NeuroImage
-
Most neuroimaging studies of resting state networks have concentrated on functional connectivity (FC) based on instantaneous correlation in a single network. In this study we investigated both FC and effective connectivity (EC) based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data - default mode network (DMN), hippocampal cortical memory network (HCMN), dorsal attention network (DAN) and fronto-parietal control network (FPCN). ⋯ Our findings indicate the following. First, regions whose activities are not synchronized interact via time-delayed causal influences. Second, the causal interactions are organized such that cingulo-parietal regions act as hubs. Finally, segregation of different resting state networks is not clear cut but only by soft boundaries.
-
The effective connectivity networks among overlapped core regions recruited by motor execution (ME) and motor imagery (MI) were explored by means of conditional Granger causality and graph-theoretic method, based on functional magnetic resonance imaging (fMRI) data. Our results demonstrated more circuits of effective connectivity among the selected seed regions during right-hand performance than during left-hand performance, implying the influences of brain asymmetry of right-handedness on effective connectivity networks. ⋯ Furthermore, the In-Out degrees of information flow suggested left dorsal premotor cortex (PMd), inferior parietal lobule (IPL) and superior parietal lobule (SPL) as causal sources in ME/MI tasks, highlighting the dominant function of left PMd, IPL and SPL. These findings depicted the causal connectivity of motor related core regions in fronto-parietal circuit and might indicate the conversion of causal networks between ME and MI.
-
The insula plays a key role in brain processing of noxious and innocuous thermal stimuli. The anterior and the posterior portions of the insular cortex are involved in different ways in nociceptive and thermoceptive processing. Therefore, their stimulus-specific functional connectivity may also differ. ⋯ When statistically compared, during both noxious and innocuous stimulation, aINS was more strongly connected to PFC and to ACC than was pINS; pINS meanwhile was more strongly connected to S1 and to the primary motor cortex (M1). Interestingly, S2 was more strongly connected to aINS than to pINS during painful stimulation but not during innocuous thermal stimulation. We conclude that aINS is more strongly functionally connected to areas known for affective and cognitive processing, whereas pINS is more strongly connected with areas known for sensory-discriminative processing of noxious and somatosensory stimuli.
-
Reliable detection of metabolic changes in the brain in vivo induced by chronic low back pain may provide improved understanding of neurophysiological mechanisms underlying the manifestation of chronic pain. In the present study, absolute concentrations of N-acetyl-aspartate (NAA), creatine (Cr), total choline (tCho), myo-inositol (mI), glutamate (Glu) and glutamine (Gln) were measured in three different pain processing cortical regions (anterior insula, anterior cingulate cortex, and thalamus) of ten patients with non-specific chronic low back pain by means of proton MR spectroscopy ((1)H-MRS) and compared to matched healthy controls. Significant decrease of Glu was observed in the anterior cingulate cortex of patients. ⋯ Reduced concentrations of Glu and Gln may indicate disordered glutamatergic neurotransmission due to prolonged pain perception, whereas decrease of NAA and mI may be ascribed to neuron and glial cell loss. No significant changes were found for Cr. The morphological evaluation of anatomic brain data revealed a significantly decreased WM volume of 17% (p<0.05) as well as a non significant trend for GM volume increase in the anterior insula of patients.
-
There is a large body of evidence that the serotonergic system plays an important role in the transmission and regulation of pain. Here we used positron emission tomography (PET) with the serotonin transporter (SERT) tracer [(11)C]DASB to study the relationship between SERT binding in the brain and responses to noxious heat stimulation in a group of 21 young healthy volunteers. Responses to noxious heat stimuli were assessed in a separate psychophysical experiment and included measurements of pain threshold, pain tolerance, and responses to phasic noxious heat stimuli and to a long lasting (7-minute) tonic noxious heat stimulus. ⋯ Finally, the VOI analysis revealed a positive correlation between pain tolerance and SERT binding in the hypothalamus (r=0.53; p=0.02) although this was not seen in the parametric analysis. These data extend our earlier observation that cortical 5-HT receptors co-determine responses to tonic but not to phasic pain. The negative correlation between SERT binding in the hypothalamus and insula with tonic pain ratings suggests a possible serotonergic control of the role of these areas in the modulation or in the affective appreciation of pain.