NeuroImage
-
Signal loss in gradient-echo echo planar imaging (GE-EPI) due to susceptibility-induced magnetic field inhomogeneity makes it difficult to assess the blood oxygenation level-dependent (BOLD) effect in fMRI investigations. The z-shim method that applies an additional gradient moment is one of the more popular methods of compensating for GE-EPI signal loss. However, this method requires a calibration sweep scan and post-processing to identify the optimal z-shim gradients, which slows down fMRI experiments. ⋯ The optimization procedure for obtaining negative and positive gradient moments generally requires about twenty GE-EPI repetitions. In conclusion, the proposed z-shim method includes an automated real-time framework to achieve a significant reduction in susceptibility-induced signal loss in GE-EPI with a minimal increase in calibration time. The proposed procedure is fully automatic and compatible with conventional GE-EPI and can thus serve as a pre-adjustment module in EPI-based fMRI researches.
-
Though mild cognitive impairment is an intermediate clinical state between healthy aging and Alzheimer's disease (AD), there are very few whole-brain voxel-wise diffusion MRI studies directly comparing changes in healthy control, mild cognitive impairment (MCI) and AD subjects. Here we report whole-brain findings from a comprehensive study of diffusion tensor indices and probabilistic tractography obtained in a very large population of healthy controls, MCI and probable AD subjects. As expected from the literature, all diffusion indices converged to show that the cingulum bundle, the uncinate fasciculus, the entire corpus callosum and the superior longitudinal fasciculus are the most affected white matter tracts in AD. ⋯ Further examination using probabilistic tractography established explicitly and quantitatively that this previously unreported increase of mode and co-localised increase of fractional anisotropy was explained by a relative preservation of motor-related projection fibres (at this early stage of the disease) crossing the association fibres of the superior longitudinal fasciculus. These findings emphasise the benefit of looking at the more complex regions in which spared and affected pathways are crossing to detect very early alterations of the white matter that could not be detected in regions consisting of one fibre population only. Finally, the methods used in this study may have general applicability for other degenerative disorders and, beyond the clinical sphere, they could contribute to a better quantification and understanding of subtle effects generated by normal processes such as visuospatial attention or motor learning.
-
Neuronal oscillations are assumed to play a pivotal role in the pathophysiology of Parkinson's disease (PD). Neurons in the subthalamic nucleus (STN) generate oscillations which are coupled to rhythmic population activity both in other basal ganglia nuclei and cortical areas. In order to localize these cortical areas, we recorded local field potentials (LFPs) and magnetoencephalography (MEG) simultaneously in PD patients undergoing surgery for deep brain stimulation (DBS). ⋯ In a subset of subjects, the superior temporal gyrus consistently showed coherent alpha oscillations. Our findings provide new insights into patterns of frequency-specific functional connectivity between basal ganglia and cortex and suggest that simultaneous inter-regional interactions may be segregated in the frequency domain. Furthermore, they demonstrate that simultaneous MEG-LFP recordings are a powerful tool to study interactions between brain areas in PD patients undergoing surgery for DBS.
-
Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for the diagnosis of AD and MCI. ⋯ Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers.
-
Characterizing demyelination/degeneration of spinal pathways in traumatic spinal cord injured (SCI) patients is crucial for assessing the prognosis of functional rehabilitation. Novel techniques based on diffusion-weighted (DW) magnetic resonance imaging (MRI) and magnetization transfer (MT) imaging provide sensitive and specific markers of white matter pathology. In this paper we combined for the first time high angular resolution diffusion-weighted imaging (HARDI), MT imaging and atrophy measurements to evaluate the cervical spinal cord of fourteen SCI patients and age-matched controls. ⋯ However, diffusion metrics were not specific to the sensorimotor scores. Due to the specificity of axial and radial diffusivity and MT measurements, results suggest the detection of demyelination and degeneration in SCI patients. Combining HARDI with MT imaging is a promising approach to gain specificity in characterizing spinal cord pathways in traumatic injury.