NeuroImage
-
Randomized Controlled Trial
Cortical and subcortical responses to high and low effective placebo treatments.
The effectiveness of placebo treatments depends on the recipient's expectations, which are at least in part shaped by previous experiences. Thus, positive past experience together with an accordant verbal instruction should enhance outcome expectations and subsequently lead to higher placebo efficacy. This should be reflected in subjective valuation reports and in activation of placebo-related brain structures. ⋯ However, only placebo-related responses in rostral anterior cingulate cortex were consistent across both the anticipation of painful stimuli and their actual administration. Most importantly, rostral anterior cingulate cortex responses were higher for the strong placebo, thus mirroring the behavioral effects. These results directly link placebo analgesia to anticipatory activity in the ventral striatum, a region involved in reward processing, and highlight the role of the rostral anterior cingulate cortex, as its activity consistently scaled with increasing analgesic efficacy.
-
We describe a cardiac gated high in-plane resolution axial human cervical spinal cord diffusion tensor imaging (DTI) protocol. Multiple steps were taken to optimize both image acquisition and image processing. The former includes slice-by-slice cardiac triggering and individually tiltable slices. ⋯ Radial diffusivity and fractional anisotropy (FA) measured in WM varied from rostral to caudal as did mean translational motion, likely reflecting respiratory motion effect. Given the considerable sensitivity of DTI measurements to motion artifact, we believe outlier detection is indispensable in spinal cord diffusion imaging. We also recommend using a mixed-effects model to account for systematic measurement bias depending on cord segment.
-
The role of experience in the development of brain mechanisms for face recognition is intensely debated. Experience with subordinate- and individual-level classification of faces is thought, by some, to be foundational in the development of the specialization of face recognition. Studying children with extremely intense interests (EII) provides an opportunity to examine experience-related changes in non-face object recognition in a population where face expertise is not fully developed. ⋯ However, heightened activation with Digimon characters in both groups suggested that there are other strong influences on the activation of the FFA beyond stimulus characteristics, experience, and classification level. By demonstrating the important role of expertise, the findings are inconsistent with a purely face-specific account of FFA function. To our knowledge, this is the first demonstration of the effects of expertise and categorization level on activation in the FFA in a group of typically developing children.
-
Comparative Study
A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease.
Hippocampal volumetry derived from structural MRI is increasingly used to delineate regions of interest for functional measurements, assess efficacy in therapeutic trials of Alzheimer's disease (AD) and has been endorsed by the new AD diagnostic guidelines as a radiological marker of disease progression. Unfortunately, morphological heterogeneity in AD can prevent accurate demarcation of the hippocampus. Recent developments in automated volumetry commonly use multi-template fusion driven by expert manual labels, enabling highly accurate and reproducible segmentation in disease and healthy subjects. ⋯ Voxel-overlap accuracies between automatic and manual labels were lower for the more pathologically heterogeneous Sunnybrook study in comparison to the ADNI-1 sample. Finally, accuracy among protocols appears to significantly differ the most in AD subjects compared to MCI and normal elders. Together, these results suggest that selection of a candidate protocol for fully automatic multi-template based segmentation in AD can influence both segmentation accuracy when compared to expert manual labels and performance as a biomarker in MCI and AD.
-
Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. ⋯ These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.