NeuroImage
-
In non-pulsatile cardiopulmonary bypass surgery, middle cerebral artery blood flow velocity (BFV) is characterized by infra-slow oscillations of approximately 0.06Hz, which are paralleled by changes in total EEG power variability (EEG-PV), measured in 2s intervals. Since the origin of these BFV oscillations is not known, we explored their possible causative relationships with oscillations in EEG-PV at around 0.06Hz. We monitored 28 patients undergoing non-pulsatile cardiopulmonary bypass using transcranial Doppler sonography and scalp electroencephalography at two levels of anesthesia, deep (prevalence of burst suppression rhythm) and moderate (prevalence of theta rhythm). ⋯ Cross-approximate entropy decreased significantly from moderate to deep anesthesia, indicating a higher level of synchrony between the two signals. Presence of a subcortical brain pacemaker that drives vascular infra-slow oscillations in the brain is proposed. These findings allow to suggest an original hypothesis explaining the mechanism underlying infra-slow neurovascular coupling.
-
Changes in cerebral perfusion and CO2 cerebrovascular reactivity during and immediately after a sojourn at high altitude remain unclear but may be critical for acclimatization. The aim of the present study was to assess the effects of 6days at 4350m on cerebral perfusion and cerebrovascular reactivity (CVR) to CO2 by arterial spin labeling (ASL) magnetic resonance imaging at sea level and to compare it with transcranial Doppler (TCD) results at altitude. Eleven healthy male subjects, non-acclimatized to altitude, stayed for 6days at 4350m (Observatoire Vallot, massif du Mont-Blanc). ⋯ In conclusion, prolonged exposure to high altitude significantly increases blood flow during the altitude stay and within 6h after returning to sea level. Decreased CO2 CVR after prolonged altitude exposure was also observed using ASL. Changes in cerebral hemodynamics with altitude exposure probably involve other mechanisms than the vasodilatory effect of hypoxia only, since it persists under normoxia several hours following the descent.
-
In aeronautics, plan continuation error (PCE) represents failure to revise a flight plan despite emerging evidence suggesting that it is no longer safe. Assuming that PCE may be associated with a shift from cold to hot reasoning, we hypothesized that this transition may result from a large range of strong negative emotional influences linked with the decision to abort a landing and circle for a repeat attempt, referred to as a "go-around". We investigated this hypothesis by combining functional neuroimaging with an ecologically valid aviation task performed under contextual variation in incentive and situational uncertainty. ⋯ Most notably, while we observed activity increases in response to uncertainty in many frontal regions such as dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), less overall activity was observed when the reward was combined with uncertainty. Moreover, participants with poor decision making, quantified as a lower discriminability index d', exhibited riskier behavior coupled with lower activity in the right DLPFC. These outcomes suggest a disruptive effect of biased financial incentive and high uncertainty on the rational decision-making neural network, and consequently, on decision relevance.
-
Neuroimaging studies have shown that the neural mechanisms of motor imagery (MI) overlap substantially with the mechanisms of motor execution (ME). Surprisingly, however, the role of several regions of the motor circuitry in MI remains controversial, a variability that may be due to differences in neuroimaging techniques, MI training, instruction types, or tasks used to evoke MI. The objectives of this study were twofold: (i) to design a novel task that reliably invokes MI, provides a reliable behavioral measure of MI performance, and is transferable across imaging modalities; and (ii) to measure the common and differential activations for MI and ME with functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). ⋯ MI uniquely engaged bilateral occipital areas, left parahippocampus, and other temporal and frontal areas, whereas ME yielded unique activity in motor and sensory areas, cerebellum, precuneus, and putamen. The MEG results show a robust event-related beta band desynchronization in the proximity of primary motor and premotor cortices during both ME and MI. Together, these results further elucidate the neural circuitry of MI and show that our task robustly and reliably invokes motor imagery, and thus may prove useful for interrogating the functional status of the motor circuitry in patients with motor disorders.
-
Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. ⋯ We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical).