NeuroImage
-
Multicenter Study Comparative Study
Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation.
Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. ⋯ With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks.
-
Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. ⋯ Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r = 0.20, p<0.05 corrected) and lower PiB uptake (r = 0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (β = 0.045) and FDG-PET (β = 0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition.
-
While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. ⋯ Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.
-
Neurodevelopmental benefits of increased gestation have not been fully characterized in terms of network organization. Since brain function can be understood as an integrated network of neural information from distributed brain regions, investigation of the effects of gestational length on network properties is a critical goal of human developmental neuroscience. Using diffusion tensor imaging and fiber tractography, we investigated the effects of gestational length on the small-world attributes and rich club organization of 147 preadolescent children, whose gestational length ranged from 29 to 42 weeks. ⋯ Rich club organization was also observed indicating the existence of highly interconnected structural hubs formed in preadolescent children. Connectivity among rich club members and from rich club regions was positively associated with the length of gestation, indicating the higher level of topological benefits of structural connectivity from longer gestation in the predominant regions of brain networks. The findings provide evidence that longer gestation is associated with improved topological organization of the preadolescent brain, characterized by the increased communication capacity of the brain network and enhanced directional strength of brain connectivity with central hub regions.
-
Our knowledge on temporal lobe epilepsy (TLE) with hippocampal sclerosis has evolved towards the view that this syndrome affects widespread brain networks. Diffusion weighted imaging studies have shown alterations of large white matter tracts, most notably in left temporal lobe epilepsy, but the degree of altered connections between cortical and subcortical structures remains to be clarified. We performed a whole brain connectome analysis in 39 patients with refractory temporal lobe epilepsy and unilateral hippocampal sclerosis (20 right and 19 left) and 28 healthy subjects. ⋯ Analysis of large network components revealed furthermore that both left and right hippocampal sclerosis affected diffuse global and interhemispheric connectivity. Thus, left temporal lobe epilepsy was associated with a much more pronounced pattern of reduced FA, that included major landmarks of perisylvian language circuitry. These distinct patterns of connectivity associated with unilateral hippocampal sclerosis show how a focal pathology influences global network architecture, and how left or right-sided lesions may have differential and specific impacts on cerebral connectivity.