NeuroImage
-
Repetitive transcranial magnetic stimulation (rTMS) modulates brain activity in different ways according to the stimulation parameters. Although the after-effects of rTMS over motor cortex are well documented in healthy individuals, less is known about the stimulation of dorso-lateral prefrontal cortex (DLPFC). Here, we studied in 20 healthy subjects how cortical oscillations are modulated by four different active rTMS protocols (1Hz, 10Hz, continuous and intermittent theta bursts - cTBS and iTBS) of the left DLPFC, and by a sham protocol used as a control condition, by comparing the spectral power of pre- and post-rTMS electroencephalographic (EEG) recordings of 15min duration. ⋯ Because large delta and theta activity is usually associated with cortical inhibition, observed rTMS-induced EEG changes in low frequencies suggest that rTMS of DLPFC transiently decreases local cortical inhibition. Importantly, local responses take place in association with other unknown mechanisms that modulate inter-hemispheric connectivity between homologous regions, resulting in the increase or decrease of fast activity in each prefrontal lobe, depending on the stimulation protocol. Only decreases of fast activity following active rTMS could be detected as significant when compared to Sham stimulation.
-
EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. ⋯ With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as modeling of physiological noise, temporal analysis of the BOLD signal and defining appropriate thresholds is required to fully profit from its high temporal resolution.