NeuroImage
-
Quantitative Susceptibility Mapping (QSM) provides a way of measuring iron concentration and myelination non-invasively and has the potential of becoming a tool of paramount importance in the study of a host of different pathologies. However, several experimental factors and the physical properties of magnetic susceptibility (χ) can impair the reliability of QSM, and it is therefore essential to assess QSM reproducibility for repeated acquisitions and different field strength. ⋯ To maximize intra-scanner reproducibility it is necessary to match the TEs of the acquisition protocol, but the application of this rule leads to inconsistent QSM values across scanners operating at different static magnetic field. This study however demonstrates that, provided a careful choice of acquisition parameters, and in particular by using TEs at 3T that are approximately 2.6 times longer than those at 7T, highly reproducible whole-brain χ maps can be achieved also across different scanners, which renders QSM a suitable technique for longitudinal follow-up in clinical settings and in multi-center studies.
-
Brain function is characterized by a convolution of various biochemical and physiological processes, raising the interest whether resting-state functional connectivity derived from hemodynamic scales shows underlying metabolic synchronies. Increasing evidence suggests that metabolic connectivity based on glucose consumption associated PET recordings may serve as a marker of cognitive functions and neuropathologies. However, to what extent fMRI-derived resting-state brain connectivity can also be characterized based on dynamic fluctuations of glucose metabolism and how metabolic connectivity is influenced by [18F]FDG pharmacokinetics remains unsolved. ⋯ In addition, the present findings demonstrated strong pharmacokinetic and tracer uptake dependencies of [18F]FDG-PET connectivity outcomes. This study highlights the application of dynamic [18F]FDG-PET to study cognitive brain functions and to decode underlying brain networks in the resting-state. Thereby, PET-derived connectivity outcomes indicated strong dependencies on tracer application regimens and subsequent time-varying tracer pharmacokinetics.
-
In the present study, we report the results from a large sample of participants (N = 136), selected based on their EEG quality, to obtain event-related potential (ERP) normative data. All participants were tested in Simple Response Task (SRT) and Discriminative Response Task (DRT). A subset of 36 participants was tested also in Passive Vision task. ⋯ Spatiotemporal patterns of all the observed components were analyzed using source analysis. Beside the well-known ERP components, we also described recently identified prefrontal components: the pre-stimulus prefrontal negativity (pN) associated to proactive cognitive (mainly inhibitory) control within the inferior frontal gyrus (iFg); the post-stimulus prefrontal N1, P1 and P2 (pN1, pP1 and pP2) involved in perceptual and visual-motor awareness (pN1 and pP1), and in stimulus-response mapping and decision-making (pP2) localized within the insular cortex. The large sample of high-quality EEG datasets allowed to identify four additional components: the pre-stimulus visual negativity (vN) originating in extrastriate visual areas and interpreted as a visual readiness activity; the post-stimulus prefrontal N2 and N3 (pN2 and pN3) components interpreted as feedback reactivation of the anterior insular cortex; and the post-stimulus prefrontal P3 (pP3), interpreted as persisting inhibitory activity of the iFg for inhibited trials.