NeuroImage
-
DBS depends on precise placement of the stimulating electrode into an appropriate target region. Image-based (direct) targeting has been limited by the ability of current technology to visualize DBS targets. We have recently developed and employed a Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR) 3T MRI sequence to more reliably visualize these structures. ⋯ The FGATIR scans allowed for localization of the thalamus, striatum, GPe/GPi, RN, and SNr and displayed sharper delineation of these structures. The FGATIR also revealed features not visible on other scan types: the internal lamina of the GPi, fiber bundles from the internal capsule piercing the striatum, and the boundaries of the STN. We hope that use of the FGATIR to aid initial targeting will translate in future studies to faster and more accurate procedures with consequent improvements in clinical outcomes.
-
To determine prospectively if qualitative and quantitative diffusion tensor imaging (DTI) metrics of white matter integrity are better than conventional magnetic resonance imaging (MRI) metrics for discriminating cerebellar diseases. ⋯ Qualitative and quantitative reductions in DTI metrics of white matter integrity in the cerebellar peduncles correlated better to clinical features of patients with sporadic and hereditary ataxias than conventional structural MRI measures of pontocerebellar atrophy.
-
The combination of electromagnetic (EM) navigation with intraoperative fluoroscopic images has the potential to create the ideal environment for spinal surgical applications. This technology enhances standard intraoperative fluoroscopic information for localization of the pedicle entry point and trajectory and may be an effective alternative to other image-guided surgery (IGS) systems. This study was performed to assess the accuracy and time efficiency (placement and fluoroscopy) using EM navigation versus conventional fluoroscopy in the placement of pedicle guide-wires. ⋯ There were no significant differences in the proportion of pedicle, vertebral body, or facet joint breaches. A higher proportion of ideal trajectories was achieved in the EM group. Therefore, we have shown that an EM IGS system can assist the spine surgeon in minimally invasive pedicle screw insertion by providing high-accuracy K-wire placement with a significant reduction in fluoroscopy time.
-
We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). ⋯ Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes.
-
Pain is a sensory and emotional experience that involves numerous brain areas. Among these areas the insular cortex has been shown to be involved in the expectation and processing of pain. Alpha power modulation has been associated with the experience of pain. ⋯ The results revealed that the anterior insula alone was involved during the threat of painful stimuli. Conversely, the posterior insula - as well as other brain areas such as SII - was involved in the processing of somatosensory stimuli regardless their painfulness. Additionally, the involvement of the anterior insula should not be accounted for by fear, arousal, habituation effect or by the occurrence of randomly interleaved different stimuli, but it is likely to be related mainly to expectancy mechanisms enhancing activity of specific neuronal populations.