NeuroImage
-
Spatial attention amplifies the neural response, i.e. spike rates, brain metabolism, and oscillatory activity at gamma frequency (beyond 30 Hz). In this study we show that when a visual target is attended enhanced synchrony between gamma phase (30 to 50 Hz) and theta phase (4 to 7 Hz), representing bottom-up and top-down activity, respectively, can be observed. ⋯ This seems to be true in particular for theta oscillations showing increased interregional phase-coupling. We conclude that memory information is stored within a distributed theta network and it is matched with an incoming sensory trace at posterior brain areas.
-
Spinal cord fMRI is a useful tool for studying spinal mechanisms of pain, hence for analgesic drug development. Its technical feasibility in both humans and rats has been demonstrated. This study investigates the reproducibility, robustness, and spatial accuracy of fMRI of lumbar spinal cord activation due to transcutaneous noxious and non-noxious electrical stimulation of the hindpaw in alpha-chloralose-anesthetized rats. ⋯ Spatially, the fMRI signal extended approximately 5 mm in the longitudinal direction, covering L(3)-L(5) segments. In the cross-sectional direction, the highest signal change of blood volume-weighted fMRI was in the middle of the ipsilateral dorsal horn, which roughly corresponds to laminae V and VI, while the highest signal change of BOLD fMRI was in the ipsilateral dorsal surface. This study demonstrates that spinal cord fMRI can be performed in anesthetized rats reliably and reproducibly offering it as a potential tool for analgesic drug discovery.
-
Diffusion Tensor Imaging (DTI) data is characterized by a high noise level. Thus, estimation errors of quantities like anisotropy indices or the main diffusion direction used for fiber tracking are relatively large and may significantly confound the accuracy of DTI in clinical or neuroscience applications. ⋯ It is applied to artificial phantom data and a brain scan. We show that this method significantly improves the quality of the estimate of the diffusion tensor, by means of both bias and variance reduction, and hence enables one either to reduce the number of scans or to enhance the input for subsequent analysis such as fiber tracking.
-
Patients with severe and chronic neurogenic pain are known to exhibit excess EEG oscillations in the 4- to 9-Hz theta frequency band in comparison with healthy controls. The generators of these excess EEG oscillations are localized in the cortical pain matrix. Since cortex and thalamus are tightly interconnected anatomically, we asked how thalamic activity and EEG are functionally related in these patients. ⋯ Median thalamocortical theta coherence was 27%, reached up to 68% and was maximal with frontal midline scalp sites. The observed high thalamocortical coherence underlines the importance of the thalamus for the synchronization of scalp EEG. We discuss the pathophysiology within the framework of a dysrhythmic thalamocortical interplay, which has important consequences for the choice of therapeutic strategy in patients with chronic and severe forms of neurogenic pain.
-
Gender greatly influences pain processing. Not only do females display greater pain sensitivity, many chronic pain conditions affect females more than males. Although gender-based differences in pain sensitivity may be related to cultural and social factors, animal studies also reveal gender differences in pain sensitivity, suggesting that physiological factors may contribute to differences in the processing of pain in males and females. ⋯ In 24 healthy adults we used functional magnetic resonance imaging (fMRI) to measure signal intensity changes during muscle and cutaneous pain induced by intramuscular and subcutaneous injections of hypertonic saline, respectively. In addition to activating the "pain neuromatrix", i.e. cingulate, insular, somatosensory and cerebellar cortices, both muscle pain and cutaneous pain evoked gender-based differences in the mid-cingulate cortex, dorsolateral prefrontal cortex, hippocampus and cerebellar cortex. These differences may reflect differences in emotional processing of noxious information in men and women and may underlie the gender bias that exists in many chronic pain conditions.