NeuroImage
-
Cognitive decline during aging includes impairments in frontal executive functions like reduced inhibitory control. However, decline is not uniform across the population, suggesting individual brain response variability to the aging process. Here we tested the hypothesis, within the oculomotor system, that older adults compensate for age-related neural alterations by changing neural activation levels of the oculomotor areas, or even by recruiting additional areas to assist with cognitive performance. ⋯ However, only the activation in the dorsolateral prefrontal cortex during the antisaccade events showed a negative correlation with the number of errors across older adults. These findings support the presence of two dissociable age-related plastic mechanisms that result in different behavioral outcomes. One related to the additional recruitment of neural resources within anterior pole to facilitate modulation of cognitive responses like faster antisaccade reaction times, and another related to increased activation of the dorsolateral prefrontal cortex resulting in a better inhibitory control in aging.
-
State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. ⋯ Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain.
-
Arterial spin labeling (ASL) MRI is a non-invasive technique for the quantification of cerebral perfusion, and pseudo-continuous arterial spin labeling (PCASL) has been recommended as the standard implementation by a recent consensus of the community. Due to the low spatial resolution of ASL images, perfusion quantification is biased by partial volume effects. Consequently, several partial volume correction (PVEc) methods have been developed to reduce the bias in gray matter (GM) perfusion quantification. ⋯ Judging by the root-mean-square error (RMSE) between simulated and estimated GM CBF, the spatially regularized method was superior in preserving spatial details compared to the linear regression method (RMSE of 1.2 vs 5.1 in simulation of GM CBF with short scale spatial variations). The linear regression method was generally less sensitive than the spatially regularized method to noise in data and errors in the partial volume estimates (RMSE 6.3 vs 23.4 for SNR = 5 simulated data), but this could be attributed to the greater smoothing introduced by the method. Analysis of a healthy cohort dataset indicates that PVEc, using either method, improves the repeatability of perfusion quantification (within-subject coefficient of variation reduced by 5% after PVEc).
-
Review
Can brain state be manipulated to emphasize individual differences in functional connectivity?
While neuroimaging studies typically collapse data from many subjects, brain functional organization varies between individuals, and characterizing this variability is crucial for relating brain activity to behavioral phenotypes. Rest has become the default state for probing individual differences, chiefly because it is easy to acquire and a supposed neutral backdrop. ⋯ Depending on the trait or behavior under study, certain tasks may bring out meaningful idiosyncrasies across subjects, essentially enhancing the individual signal in networks of interest beyond what can be measured at rest. Here, we review theoretical considerations and existing work on how brain state influences individual differences in functional connectivity, present some preliminary analyses of within- and between-subject variability across conditions using data from the Human Connectome Project, and outline questions for future study.
-
Consciousness has been hypothesized to emerge from complex neuronal dynamics, which prevails when brain operates in a critical state. Evidence supporting this hypothesis comes mainly from studies investigating neuronal activity on a short time-scale of seconds. However, a key aspect of criticality is presence of scale-free temporal dependencies occurring across a wide range of time-scales. ⋯ Second, we observed a substantial decrease of LRTCs during loss of consciousness, the magnitude of which was associated with the baseline (i.e. pre-anesthesia) state of the brain. Specifically, brain regions characterized by strongest LRTCs during a wakeful baseline exhibited greatest decreases during anesthesia (i.e. "the rich got poorer"), which consequently disturbed the posterior-anterior gradient. Therefore, our results suggest that general anesthesia affects mainly brain areas characterized by strongest LRTCs during wakefulness, which might account for lack of capacities for extensive temporal integration during loss of consciousness.