NeuroImage
-
The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. ⋯ The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk's theorem analysis showed that the 'FA fine' metric of the RSI model and 'orientation dispersion' (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI.
-
Most neuroanatomical studies are based on T1-weighted MR images, whose intensity profiles are not solely determined by the tissue's longitudinal relaxation times (T1), but also affected by varying non-T1 contributions, hampering data reproducibility. In contrast, quantitative imaging using the MP2RAGE sequence, for example, allows direct characterization of the brain based on the tissue property of interest. Combined with 7 Tesla (7T) MRI, this offers unique opportunities to obtain robust high-resolution brain data characterized by a high reproducibility, sensitivity and specificity. ⋯ Finally, removal of B1+ residuals affects hippocampal volumetry and boundary definitions, particularly near structures characterized by strong intensity changes (e.g. cerebral spinal fluid). Taken together, we show that the choice of MP2RAGE parameters can impact T1 comparability across sites and present evidence that hippocampal segmentation results are modulated by B1+ inhomogeneities. This calls for careful (1) consideration of sequence parameters when setting acquisition protocols, as well as (2) acquisition of a B1+ map to correct MP2RAGE data for potential B1+ variations to allow comparison across datasets.
-
Multicenter Study
Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study.
We present the reliability of ultra-high field T2* MRI at 7T, as part of the UK7T Network's "Travelling Heads" study. T2*-weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and R2* maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. The relaxation parameters of human brain tissue are such that R2* mapping and QSM show particularly strong gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5-3T). We aimed to determine the inter-subject and inter-site reproducibility of QSM and R2* mapping at 7T, in readiness for future multi-site clinical studies. ⋯ The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coefficient of reproducibility for QSM and R2* at 7T compared to previous reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site clinical studies at 7T.
-
Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. ⋯ In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.
-
Spontaneous fluctuations in MRI signals from gray matter (GM) in the brain are interpreted as originating from variations in neural activity, and their inter-regional correlations may be analyzed to reveal functional connectivity. However, most studies of intrinsic neuronal activity have ignored the spontaneous fluctuations that also arise in white matter (WM). In this work, we explore spontaneous fluctuations in resting state MRI signals in WM based on spatial independent component analyses (ICA), a data-driven approach that separates signals into independent sources without making specific modeling assumptions. ⋯ These functionally-related structures are grossly symmetric and coincide with corresponding tracts identified from diffusion MRI. Finally, functional connectivity was quantified by calculating correlations between pairs of structures to explore the synchronicity of resting state BOLD signals across WM regions, and the experimental results revealed that there exist two distinct groupings of functional correlations in WM tracts at rest. Our study provides further insights into the nature of activation patterns, functional responses and connectivity in WM, and support previous suggestions that BOLD signals in WM show similarities with cortical activations and are characterized by distinct underlying structures in tasks and at rest.