NeuroImage
-
Comparative Study
Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences.
Arterial spin labeling (ASL) can be implemented by combining different labeling schemes and readout sequences. In this study, the performance of 2D and 3D single-shot pulsed-continuous ASL (pCASL) sequences was assessed in a group of young healthy volunteers undergoing a baseline perfusion and a functional study with a sensory-motor activation paradigm. The evaluated sequences were 2D echo-planar imaging (2D EPI), 3D single-shot fast spin-echo with in-plane spiral readout (3D FSE spiral), and 3D single-shot gradient-and-spin-echo (3D GRASE). ⋯ The addition of BS to the 3D sequences yielded a 3-fold temporal SNR increase compared to the unsuppressed sequences. 2D EPI provided better GM-to-WM contrast ratio than the 3D sequences. The analysis of functional data at the subject level showed a 3-fold increase in statistical power for the BS 3D sequences, although the improvement was attenuated at the group level. 3D without BS did not increase the maximum t-values, however, it yielded larger activation clusters than 2D. These results demonstrate that BS 3D single-shot imaging sequences improve the performance of pCASL in baseline and activation studies, particularly for individual subject analyses where the improvement in temporal SNR translates into markedly enhanced power for task activation detection.
-
Detailed understanding of the haemodynamic changes that underlie non-invasive neuroimaging techniques such as blood oxygen level dependent functional magnetic resonance imaging is essential if we are to continue to extend the use of these methods for understanding brain function and dysfunction. The use of animal and in particular rodent research models has been central to these endeavours as they allow in-vivo experimental techniques that provide measurements of the haemodynamic response function at high temporal and spatial resolution. A limitation of most of this research is the use of anaesthetic agents which may disrupt or mask important features of neurovascular coupling or the haemodynamic response function. ⋯ These differences include biphasic response regions (initial increases in blood volume and oxygenation followed by subsequent decreases) as well as oscillations in the response time series of awake animals. These haemodynamic response features do not reflect concomitant changes in the underlying neuronal activity and therefore reflect neurovascular or cerebrovascular processes. These hitherto unreported hyperemic response dynamics may have important implications for the use of anaesthetised animal models for research into the haemodynamic response function.
-
Functional magnetic resonance imaging (fMRI) is a frequently used non-invasive mapping technique for investigating the human motor system. Recently, neuronavigated transcranial magnetic stimulation (nTMS) has been established as an alternative approach. We here compared the test-retest reliability of both mapping techniques with regard to the cortical representations of the hand, leg, face and tongue areas. ⋯ Both methods are highly reliable when mapping the core region of a given target muscle, especially for the hand representation area. In contrast, mapping the spatial extent of a cortical representation area was only little reliable for both nTMS and fMRI. In summary, fMRI was better suited when mapping motor representations of the head, while nTMS showed equal reliability for mapping the hand and foot representation areas. Hence, both methods may well complement each other.
-
Transcranial magnetic stimulation (TMS) to the left dorsolateral prefrontal cortex (DLPFC) is used clinically for the treatment of depression however outcomes vary greatly between patients. We have shown that average clinical efficacy of different left DLPFC TMS sites is related to intrinsic functional connectivity with remote regions including the subgenual cingulate and suggested that functional connectivity with these remote regions might be used to identify optimized left DLPFC targets for TMS. ⋯ Factors likely to improve individualized targeting including the use of seed maps and the focality of stimulation are investigated and discussed. The techniques presented here may be applicable to individualized targeting of focal brain stimulation across a range of diseases and stimulation modalities and can be experimentally tested in clinical trials.
-
There have been many interpretations of functional connectivity and proposed measures of temporal correlations between BOLD signals across different brain areas. These interpretations yield from many studies on functional connectivity using resting-state fMRI data that have emerged in recent years. However, not all of these studies used the same metrics for quantifying the temporal correlations between brain regions. ⋯ For the present data set, we found greater stability in FC between the second and third sessions (one hour between sessions) compared to the first and second sessions (approximately 11months between sessions). Finally, we report that some of the metrics showed a positive association between strength and stability. In summary, the results presented in this paper suggest important implications when choosing metrics for quantifying and assessing various types of functional connectivity for resting-state fMRI studies.