NeuroImage
-
One of the promises of Ultra High Field (UHF) MRI scanners is to bring finer spatial resolution in the human brain images due to an increased signal to noise ratio. However, at such field strengths, the spatial non-uniformity of the Radio Frequency (RF) transmit profiles challenges the applicability of most MRI sequences, where the signal and contrast levels strongly depend on the flip angle (FA) homogeneity. In particular, the MP-RAGE sequence, one of the most commonly employed 3D sequences to obtain T1-weighted anatomical images of the brain, is highly sensitive to these spatial variations. ⋯ Regarding the low-FA k(T)-point based excitations, the FA uniformity achieved at 7 T surpassed what is typically obtained at 3 T. Subsequently, automated white and gray matter segmentation not only confirmed the expected improvements in image quality, but also suggests that care should be taken to properly account for the strong local susceptibility effects near cranial cavities. Overall, these findings indicate that the k(T)-point-based pTx solution is an excellent candidate for UHF 3D imaging, where patient safety is a major concern due to the increase of specific absorption rates.
-
Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. ⋯ We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion.
-
Magnetization transfer (MT) imaging quantitatively assesses cerebral white matter disease through its sensitivity to macromolecule-bound protons including those associated with myelin proteins and lipid bilayers. However, traditional MT contrast measured by the MT ratio (MTR) lacks pathologic specificity as demyelination, axon loss, inflammation and edema all impact MTR, directly and/or indirectly through multiple covariances among imaging parameters (particularly MTR with T(1)) and tissue features (e.g. axon loss with demyelination). In this study, more complex modeling of MT phenomena ("quantitative" MT or qMT) was applied to a less complex disease model (the myelin mutant shaking [sh] pup, featuring hypomyelination but neither inflammation nor axon loss) in order to eliminate the covariances on both sides of the MR-pathology "equation" and characterize these important relationships free from the usual confounds. qMT measurements were acquired longitudinally in 6 sh pups and 4 age-matched controls ranging from 3 to 21 months of age and compared with histology. The qMT parameter, bound pool fraction (f), was the most distinctive between diseased and control animals; both f and longitudinal relaxation rate R(1) tracked myelination with normal aging, whereas MTR did not--presumably owing to counterbalancing MT and R(1) effects. qMT imaging provides a more accurate and potentially more specific non-invasive tissue characterization.
-
To establish a novel approach for fiber tracking based on navigated transcranial magnetic stimulation (nTMS) mapping of the primary motor cortex and to propose a new algorithm for determination of an individualized fractional anisotropy value for reliable and objective fiber tracking. ⋯ Fiber tracking based on nTMS by the proposed standardized algorithm represents an objective visualization method based on functional data and provides a valuable instrument for preoperative planning and intraoperative orientation and monitoring.
-
Review Historical Article
The future of susceptibility contrast for assessment of anatomy and function.
The magnetic properties of tissues affect MR images and differences in magnetic susceptibility can be utilized to provide impressive image contrast. Specifically, phase images acquired with gradient echo MRI provide unique and superb contrast which reflects variations in the underlying tissue composition. ⋯ Still, this major tissue contrast mechanism is largely unexplored in magnetic resonance imaging because non-conventional reconstruction and dipole deconvolution are required to quantitatively map tissue susceptibility properly. This short review summarizes the current state of susceptibility contrast and susceptibility mapping and aims to identify future directions.