NeuroImage
-
Selective attention and multisensory integration are fundamental to perception, but little is known about whether, or under what circumstances, these processes interact to shape conscious awareness. Here, we used transcranial magnetic stimulation (TMS) to investigate the causal role of attention-related brain networks in multisensory integration between visual and auditory stimuli in the sound-induced flash illusion. ⋯ We found that disruption of the right angular gyrus, but not of the adjacent supramarginal gyrus or of a sensory control site, enhanced participants' veridical perception of the multisensory events, thereby reducing their susceptibility to the illusion. Our findings suggest that the same parietal networks that normally act to enhance perception of attended events also play a role in the binding of auditory and visual stimuli in the sound-induced flash illusion.
-
EEG-microstates exploit spatio-temporal EEG features to characterize the spontaneous EEG as a sequence of a finite number of quasi-stable scalp potential field maps. So far, EEG-microstates have been studied mainly in wakeful rest and are thought to correspond to functionally relevant brain-states. Four typical microstate maps have been identified and labeled arbitrarily with the letters A, B, C and D. ⋯ In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture.
-
Magnetization transfer (MT) imaging quantitatively assesses cerebral white matter disease through its sensitivity to macromolecule-bound protons including those associated with myelin proteins and lipid bilayers. However, traditional MT contrast measured by the MT ratio (MTR) lacks pathologic specificity as demyelination, axon loss, inflammation and edema all impact MTR, directly and/or indirectly through multiple covariances among imaging parameters (particularly MTR with T(1)) and tissue features (e.g. axon loss with demyelination). In this study, more complex modeling of MT phenomena ("quantitative" MT or qMT) was applied to a less complex disease model (the myelin mutant shaking [sh] pup, featuring hypomyelination but neither inflammation nor axon loss) in order to eliminate the covariances on both sides of the MR-pathology "equation" and characterize these important relationships free from the usual confounds. qMT measurements were acquired longitudinally in 6 sh pups and 4 age-matched controls ranging from 3 to 21 months of age and compared with histology. The qMT parameter, bound pool fraction (f), was the most distinctive between diseased and control animals; both f and longitudinal relaxation rate R(1) tracked myelination with normal aging, whereas MTR did not--presumably owing to counterbalancing MT and R(1) effects. qMT imaging provides a more accurate and potentially more specific non-invasive tissue characterization.
-
To establish a novel approach for fiber tracking based on navigated transcranial magnetic stimulation (nTMS) mapping of the primary motor cortex and to propose a new algorithm for determination of an individualized fractional anisotropy value for reliable and objective fiber tracking. ⋯ Fiber tracking based on nTMS by the proposed standardized algorithm represents an objective visualization method based on functional data and provides a valuable instrument for preoperative planning and intraoperative orientation and monitoring.
-
Review Historical Article
The intravascular susceptibility effect and the underlying physiology of fMRI.
In this article, I will first give a brief account of my work at MGH on characterizing the intravascular susceptibility effect. Then I will describe studies into the underlying physiology of BOLD-fMRI which has become of interest to my group in the following decade. I will touch issues such as signal source of BOLD fMRI, capillary recruitment, the elusive initial dip and others.