Physiological measurement
-
Physiological measurement · Nov 2013
Temperature multiscale entropy analysis: a promising marker for early prediction of mortality in septic patients.
A few studies estimating temperature complexity have found decreased Shannon entropy, during severe stress. In this study, we measured both Shannon and Tsallis entropy of temperature signals in a cohort of critically ill patients and compared these measures with the sequential organ failure assessment (SOFA) score, in terms of intensive care unit (ICU) mortality. Skin temperature was recorded in 21 mechanically ventilated patients, who developed sepsis and septic shock during the first 24 h of an ICU-acquired infection. ⋯ Both entropies exhibited similar prognostic accuracy. Combination of SOFA and entropy presented improved the outcome of univariate models. We suggest that reduced wavelet Shannon and Tsallis entropies of temperature signals may complement SOFA in mortality prediction, during the first 24 h of an ICU-acquired infection.