Physiological measurement
-
Physiological measurement · Jul 2014
Feasibility of long-term cerebral and peripheral regional tissue oxygen saturation measurements.
The aim of this study was to analyse the feasibility of long-term measurements of cerebral (crSO2) and peripheral (prSO2) regional tissue oxygen saturation on the first day of life by determining the amount of artefacts and their influence on rSO2. Near infrared spectroscopy (NIRS) measurements were performed fronto-parietal left (crSO2) and on the right forearm (prSO2). Arterial oxygen saturation (SpO2) was measured by pulse oximetry on the right wrist. ⋯ The number of artefacts in prSO2 measurements after introduction of C1 was 10.83 ± 4.21%, and after introduction of all criteria significantly higher with 17.78 ± 4.27%. After introduction of C1, further criteria did not significantly change rSO2: crSO2 (78.6 ± 1.3% versus 78.5 ± 1.2%) and prSO2 (83.7 ± 0.9% versus 83.5 ± 0.9%). In conclusion, long-term NIRS measurements of crSO2 and prSO2 are feasible, since most artefacts are due to missing values and therefore easy to recognize.
-
Physiological measurement · Jun 2014
Unilateral empyema impacts the assessment of regional lung ventilation by electrical impedance tomography.
Several studies have shown the ability of electrical impedance tomography (EIT) to assess regional ventilation distribution in human lungs. Fluid accumulation in the pleural space as in empyema, typically occurring on one chest side, may influence the distribution of ventilation and the corresponding EIT findings. The aim of our study was to examine this effect on the assessment of regional ventilation by EIT. ⋯ However, in contrast to previous findings in patients with no pleural pathology, very low values of rel. ΔZ were found when the lung on the affected side was ventilated. ROI-based analysis rendered higher values than the whole-image analysis in this case, nonetheless, the values were significantly smaller than when the unaffected side was ventilated in spite of identical VT. In conclusion, our results indicate that the presence of empyema may affect the quantitative evaluation of regional lung ventilation by EIT.
-
Physiological measurement · May 2014
Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients.
Around 5%-10% of newborn babies require some form of resuscitation at birth and heart rate (HR) is the best guide of efficacy. We report the development and first trial of a device that continuously monitors neonatal HR, with a view to deployment in the delivery room to guide newborn resuscitation. The device uses forehead reflectance photoplethysmography (PPG) with modulated light and lock-in detection. ⋯ In babies ⩾32 weeks gestation, the median reliability was 97.7% at ±10 bpm and the limits of agreement (LOA) between PPG and ECG were +8.39 bpm and -8.39 bpm. In babies <32 weeks gestation, the median reliability was 94.8% at ±10 bpm and the LOA were +11.53 bpm and -12.01 bpm. Clinical evaluation during newborn deliveries is now underway.
-
This paper presents a new approach for evaluating predictions of oxygen saturation levels in blood ( SpO2). A performance metric based on a threshold is proposed to evaluate SpO2 predictions based on whether or not they are able to capture critical desaturations in the SpO2 time series of patients. We use linear auto-regressive models built using historical SpO2 data to predict critical desaturation events with the proposed metric. ⋯ We also show that including the PR dynamics does not improve the earliest time at which critical SpO2 levels are predicted (p-value = 0.986). Our results indicate oxygen in blood is an effective input to the PR rather than vice versa. We demonstrate that the combination of predictive models with frequent pulse oximetry measurements can be used as a warning of critical oxygen desaturations that may have adverse effects on the health of patients.
-
Physiological measurement · Mar 2014
Pitfalls in microdialysis methodology: an in vitro analysis of temperature, pressure and catheter use.
Microdialysis of macromolecules within the brain provides a unique insight into physiological and pathological processes occurring within an otherwise inaccessible cranial cavity. The physically restricted nature of the intracranial compartment may present wider variations of pressure and temperature than those experienced in the rest of the body. ⋯ Our results demonstrate that the wide variation of recovery attributable to different catheter use outweighed any effects caused by temperature or pressure. Investigators performing cytokine microdialysis using the CMA 71 system should be aware of the wide inter-catheter variability and potential effects of temperature on recovery.