Biological & pharmaceutical bulletin
-
We previously investigated the effects of an aqueous extract of maté (mate) tea, made from the leaves of Ilex paraguariensis, on the diabesity and metabolic syndrome features in a mouse model. Mate induced significant decreases in body weight (BW), body mass index, and food intake (FI). In this study, to verify the mode of action of mate on FI and consequently on BW, we examined the anorexic effects of mate on the appetite and satiety markers glucagon-like peptide 1 (GLP-1) and leptin in high-fat diet-fed ddY mice. ⋯ Mate induced significant increases in GLP-1 levels and leptin levels compared with the control. Acute administration of major constituents of mate showed significant increases in GLP-1 levels by dicaffeoyl quinic acids and matesaponins, and significant induction of satiety by caffeoyl quinic acids and caffeine in ddY mice. These findings suggest that mate may induce anorexic effects by direct induction of satiety and by stimulation of GLP-1 secretion and modulation of serum leptin levels.
-
The purpose of this review is to summarize the recent studies examining the expression of leukotrienes (LTs) and their receptors in nociceptive pathways, and their crucial roles in pathological pain conditions. LTs belong to a large family of lipid mediators, termed eicosanoids, which are derived from arachidonic acids and released from the cell membrane by phospholipases. LTs are known to be important factors in a variety of local and systemic diseases and allergic/inflammatory diseases. ⋯ We also examined the expression and roles on pain behaviors of LT receptors in the dorsal root ganglion (DRG) using a peripheral inflammation model. The data indicate CysLT2 expressed in DRG neurons may play a role as a modulator of P2X3, and contribute to the potentiation of the neuronal activity following peripheral inflammation. This review summarizes the hypothesis that LTs might work in the spinal cord and primary afferent in pathological pain conditions.
-
The development of a simple, easy-to-use, and non-invasive vaccination system is in high demand. For transcutaneous immunization (TCI), we previously developed a hydrogel patch formulation that accelerates the penetration of an antigen (Ag) through the stratum corneum (SC) and effectively elicits Ag-specific immune responses. ⋯ TCI using a hydrogel patch induced few local and systemic adverse reactions. Based on these results, we are now advancing translational research to evaluate the safety and efficacy of our novel TCI system in humans.
-
Transient receptor potential vanilloid 1 (TRPV1) is primarily expressed in central and peripheral terminals of non-myelinated primary afferent neurons. We previously showed that AS1928370, a novel TRPV1 antagonist that can prevent ligand-induced activation but not proton-induced activation, ameliorates neuropathic pain in rats without hyperthermic effect. In this study, we investigated its analgesic profile in mice. ⋯ Intrathecal administration of AS1928370 (30 µg/body) also significantly suppressed mechanical allodynia. In addition, AS1928370 showed no effect on locomotor activity up to 30 mg/kg p.o. These results suggest that spinal TRPV1 has an important role in the transmission of neuropathic pain and that the central nervous system (CNS) penetrant TRPV1 receptor antagonist AS1928370 is a promising candidate for treating neuropathic pain.
-
Platelet-activating factor (PAF) is a phospholipid mediator that regulates the functions of a variety of cells in the peripheral tissues and in the nervous system. Findings that injection of PAF exogenously at the skin or in the spinal cord induced pain hypersensitivity gave us much attention to its role in pain signaling. Studies using pharmacological and genetic tools to control the functions of the PAF receptor (PAFR) revealed that the PAF/PAFR system plays a role in tissue injury-induced pain, but not in the acute physiological pain evoked by thermal and mechanical stimuli. ⋯ Nerve injury upregulated PAFRs in dorsal root ganglion (DRG) neurons. Studies using PAFR antagonists and PAFR-deficient mice indicated a crucial role of PAFR in production of tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) in the DRG and in developing and maintaining neuropathic pain. Thus, blocking PAFRs may be a viable therapeutic strategy for treating neuropathic pain.