Biological & pharmaceutical bulletin
-
Review
Roles of Transient Receptor Potential Ankyrin 1 in Oxaliplatin-Induced Peripheral Neuropathy.
Chemotherapy-induced peripheral neuropathy (CIPN), characterized by symptoms of paresthesia, dysesthesia, numbness, and pain, is a common adverse effect of several chemotherapeutic agents, including platinum-based agents, taxanes, and vinca alkaloids. However, no effective prevention or treatment strategies exist for CIPN because the mechanisms underpinning this neuropathy are poorly understood. Recent accumulating evidence suggests that some transient receptor potential (TRP) channels functioning as nociceptors in primary sensory neurons are responsible for CIPN. ⋯ In human TRPA1 (hTRPA1)-expressing cells, oxaliplatin or oxalate causes TRPA1 sensitization to reactive oxygen species (ROS) by inhibiting prolyl hydroxylases (PHDs). Inhibition of PHD-mediated hydroxylation of a proline residue within the N-terminal ankyrin repeat of hTRPA1 endows TRPA1 with cold sensitivity by its sensing of cold-evoked ROS. This review discusses these findings and summarizes the evidence demonstrating that oxaliplatin-induced acute cold hypersensitivity is caused by TRPA1 sensitization to ROS via PHD inhibition, which enables TRPA1 to convert ROS signaling into cold sensitivity.
-
Bisphosphonates (BPs), with a non-hydrolysable P-C-P structure, are cytotoxic analogues of pyrophosphate, bind strongly to bone, are taken into osteoclasts during bone-resorption and exhibit long-acting anti-bone-resorptive effects. Among the BPs, nitrogen-containing BPs (N-BPs) have far stronger anti-bone-resorptive effects than non-N-BPs. In addition to their pyrogenic and digestive-organ-injuring side effects, BP-related osteonecrosis of jaws (BRONJ), mostly caused by N-BPs, has been a serious concern since 2003. ⋯ From these findings, we propose that phosphate-transporter-mediated and inflammation/infection-promoted mechanisms underlie BRONJ. To treat and/or prevent BRONJ, we propose (i) Eti as a substitution drug for N-BPs and (ii) Clo as a combination drug with N-BPs while retaining their anti-bone-resorptive effects. Our clinical trials support this role for Eti (we cannot perform such trials using Clo because Clo is not clinically approved in Japan).
-
Imatinib, nilotinib, and dasatinib are tyrosine kinase inhibitors (TKIs) that have become first-line treatments for Philadelphia chromosome-positive chronic myeloid leukemia (CML). According to European LeukemiaNet recommendations, the clinical response of CML patients receiving TKI therapy should be evaluated after 3, 6, and 12 months. For patients not achieving a satisfactory response within 3 months, the mean plasma concentration for the three months of TKI administration must be considered. ⋯ For patients with a UGT1A1*6/*6, *6/*28, or *28/*28 genotype initially administered 300-400 mg/d, a target nilotinib C₀ of 500 ng/mL is recommended to prevent elevation of bilirubin levels, whereas for patients with the UGT1A1*1 allele initially administered 600 mg/d, a target nilotinib C₀ of 800 ng/mL is recommended. For dasatinib, it is recommended that a higher Cmax or C₂ (above 50 ng/mL) to obtain a clinical response and a lower C₀ (less than 2.5 ng/mL) to avoid pleural effusion be maintained by once daily administration of dasatinib. Although at present clinicians consider the next pharmacotherapy from clinical responses (efficacy/toxicity) obtained by a fixed dosage of TKI, the TKI dosage should be adjusted based on target plasma concentrations to maximize the efficacy and to minimize the incidence of adverse events.
-
One of the most significant conceptual changes brought about by the analysis of circadian clock-deficient mice is that abnormalities in the circadian clock are linked not only to sleep arousal disorder but also to a wide variety of common diseases, including hypertension, diabetes, obesity, and cancer. It has recently been shown that the disruption of the two cryptochrome genes Cry1 and Cry2-core elements of the circadian clock-induces salt-dependent hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. ⋯ Importantly, this enzyme is functionally conserved in humans, and the pathophysiologic condition of human idiopathic hyperaldosteronism resembles that of Cry1/2-deficient mice. This review highlights the potential utility of circadian clock-deficient mice as a tool for exploring hitherto unknown disease etiology linked to the circadian clock.
-
The purpose of this review is to summarize the recent studies examining the expression of leukotrienes (LTs) and their receptors in nociceptive pathways, and their crucial roles in pathological pain conditions. LTs belong to a large family of lipid mediators, termed eicosanoids, which are derived from arachidonic acids and released from the cell membrane by phospholipases. LTs are known to be important factors in a variety of local and systemic diseases and allergic/inflammatory diseases. ⋯ We also examined the expression and roles on pain behaviors of LT receptors in the dorsal root ganglion (DRG) using a peripheral inflammation model. The data indicate CysLT2 expressed in DRG neurons may play a role as a modulator of P2X3, and contribute to the potentiation of the neuronal activity following peripheral inflammation. This review summarizes the hypothesis that LTs might work in the spinal cord and primary afferent in pathological pain conditions.