Human brain mapping
-
Human brain mapping · Feb 2013
Randomized Controlled TrialImpairment of executive performance after transcranial magnetic modulation of the left dorsal frontal-striatal circuit.
The dorsal frontal-striatal circuit is implicated in executive functions, such as planning. The Tower of London task, a planning task, in combination with off-line low-frequency repetitive transcranial magnetic stimulation (rTMS), was used to investigate whether interfering with dorsolateral prefrontal function would modulate executive performance, mimicking dorsal frontal-striatal dysfunction as found in neuropsychiatric disorders. Eleven healthy controls (seven females; mean age 25.5 years) were entered in a cross-over design: two single-session treatments of low-frequency (1 Hz) rTMS (vs. sham rTMS) for 20 min on the left dorsolateral prefrontal cortex (DLPFC). ⋯ The low-frequency rTMS treatment impaired performance, but only when the subjects had not performed the task before: we found a TMS condition-by-order effect, such that real TMS treatment in the first session led to significantly more errors (P = 0.032), whereas this TMS effect was not present in subjects who received real TMS in the second session. At the neural level, rTMS resulted in decreased activation during the rTMS versus sham condition in prefrontal brain regions (i.e., premotor, dorsolateral prefrontal and anterior prefrontal cortices) and visuospatial brain regions (i.e., precuneus/cuneus and inferior parietal cortex). The results show that low-frequency off-line rTMS on the DLPFC resulted in decreased task-related activations in the frontal and visuospatial regions during the performance of the Tower of London task, with a behavioral effect only when task experience is limited.
-
Human brain mapping · Jan 2013
Neural correlates of tinnitus duration and distress: a positron emission tomography study.
Cerebral (18)F-deoxyglucose positron emission tomography (FDG-PET) has shown altered auditory pathway activity in tinnitus. However, the corresponding studies involved only small samples and analyses were restricted to the auditory cortex in most studies. Evidence is growing that also limbic, frontal, and parietal areas are involved in the pathophysiology of chronic tinnitus. ⋯ Tinnitus duration and distress were associated with areas involved in attentional and emotional processing. This is in line with recent findings indicating the relevance of higher order areas in the pathophysiology of tinnitus. Earlier results of asymmetric activation of the auditory cortices in tinnitus were confirmed, i.e., left-sided overactivation was found independently from tinnitus laterality.
-
Human brain mapping · Jan 2013
Meta AnalysisLocalization of pain-related brain activation: a meta-analysis of neuroimaging data.
A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. ⋯ The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated.
-
Human brain mapping · Dec 2012
Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping.
Histological studies have shown a relatively high iron concentration in the subthalamic nucleus (STN). T2- and T2*-weighted sequences have previously been used to visualize the STN in vivo. The phase information of gradient-echo images reflects the magnetic tissue properties more directly, e.g., iron is more paramagnetic than water. ⋯ Their susceptibilities are quantitatively different (0.06 and 0.1 ppm for the STN and SN, respectively). These maps allowed the STN, SN, and the red nucleus to be manually segmented, thus providing 3D visualization of their boundaries. In sum, the STN can be more clearly distinguished from adjacent structures in susceptibility maps than in T2*-weighted images or phase images.
-
Human brain mapping · Dec 2012
The cerebral representation of temporomandibular joint occlusion and its alternation by occlusal splints.
Occlusal splints are a common and effective therapy for temporomandibular joint disorder. Latest hypotheses on the impact of occlusal splints suggest an altered cerebral control on the occlusion movements after using a splint. However, the impact of using a splint during chewing on its cerebral representation is quite unknown. ⋯ An additionally applied individually based evaluation of representation sites in regions of interest demonstrated that the somatotopic representation for both conditions in the pre- and postcentral gyri did not significantly differ. Furthermore, this analysis confirmed the decreasing effect of the splint on bilateral primary and secondary motor and somatosensory cortical activation. In contrast to the decreasing effect on sensorimotor areas, an increased level of activity in the fronto-parieto-occipital and cerebellar network might be associated with the therapeutic effect of occlusal splints.