Academic radiology
-
Comparative Study
Intraoperative tumor segmentation and volume measurement in MRI-guided glioma surgery for tumor resection rate control.
Gross-total surgery under intraoperative magnetic resonance imaging (MRI) is a promising method of glioma removal. The purpose of this article is intraoperative measurement of resected tumor volume in MRI-guided glioma surgery using semiautomatic image segmentation to unbiased resection rate control. ⋯ The FC-based tumor segmentation method can be used for intraoperative tumor segmentation and volume measurement in MRI-guided glioma surgery using 0.3-T open magnets. This method is useful for objective resection rate monitoring, which may ultimately minimize the amount of residual tumor in glioma surgery.
-
The two-dimensional (2D)-three dimensional (3D) registration of a computed tomography image to one or more x-ray projection images has a number of image-guided therapy applications. In general, fiducial marker-based methods are fast, accurate, and robust, but marker implantation is not always possible, often is considered too invasive to be clinically acceptable, and entails risk. There also is the unresolved issue of whether it is acceptable to leave markers permanently implanted. Intensity-based registration methods do not require the use of markers and can be automated because such geometric features as points and surfaces do not need to be segmented from the images. However, for spine images, intensity-based methods are susceptible to local optima in the cost function and thus need initial transformations that are close to the correct transformation. ⋯ The use of one fiducial marker reduces 2D-3D spine image registration error slightly and improves robustness substantially. The findings are potentially relevant for image-guided therapy. If one marker is sufficient to obtain clinically acceptable registration accuracy and robustness, as the preliminary results using the proposed hybrid similarity measure suggest, the marker can be placed on a spinous process, which could be accomplished without penetrating muscle or using fluoroscopic guidance, and such a marker could be removed relatively easily.
-
Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. ⋯ All the experiments performed on synthetic and real fMRI data demonstrate the relevance of HSMESMs in fMRI brain mapping. In particular, the statistical character of these models, along with their learning and generalizing abilities are of particular interest when dealing with strong variabilities of the active fMRI signal across time, space, experiments, and subjects.