Brain : a journal of neurology
-
Cerebral amyloid angiopathy is a common neuropathological finding in the ageing human brain, associated with cognitive impairment. Neuroimaging markers of severe cerebral amyloid angiopathy are cortical microbleeds and microinfarcts. These parenchymal brain lesions are considered key contributors to cognitive impairment. ⋯ In contrast, nine microinfarcts were found in these sections, of which six were only retrospectively visible at ultra-high resolution. In conclusion, these findings suggest that microbleeds on in vivo magnetic resonance imaging are specific for microhaemorrhages in cerebral amyloid angiopathy, and that increasing the resolution of magnetic resonance images results in the detection of more 'non-haemorrhagic' pathology. In contrast, the vast majority of microinfarcts currently remain under the detection limits of clinical in vivo magnetic resonance imaging.
-
SEE BIGLER DOI101093/AWW277 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Post-traumatic amnesia is very common immediately after traumatic brain injury. It is characterized by a confused, agitated state and a pronounced inability to encode new memories and sustain attention. Clinically, post-traumatic amnesia is an important predictor of functional outcome. ⋯ Patients with post-traumatic amnesia showed evidence of widespread traumatic axonal injury measured using diffusion magnetic resonance imaging. This change was more marked within the cingulum bundle, the tract connecting the parahippocampal gyrus to the posterior cingulate cortex. These findings provide novel insights into the pathophysiology of post-traumatic amnesia and evidence that memory impairment acutely after traumatic brain injury results from altered parahippocampal functional connectivity, perhaps secondary to the effects of axonal injury on white matter tracts connecting limbic structures involved in memory processing.
-
Peripheral polyneuropathy is a common and dose-limiting side effect of many important chemotherapeutic agents. Most such neuropathies are characterized by early axonal degeneration, yet therapies that inhibit this axonal destruction process do not currently exist. Recently, we and others discovered that genetic deletion of SARM1 (sterile alpha and TIR motif containing protein 1) dramatically protects axons from degeneration after axotomy in mice. ⋯ Our results reveal that subacute/chronic axon loss induced by vincristine occurs via a SARM1 mediated axonal destruction pathway, and that blocking this pathway prevents the development of vincristine-induced peripheral polyneuropathy. These findings, in conjunction with previous studies with axotomy and traumatic brain injury, establish SARM1 as the central determinant of a fundamental axonal degeneration pathway that is activated by diverse insults. We suggest that targeting SARM1 or its downstream effectors may be a viable therapeutic option to prevent vincristine-induced peripheral polyneuropathy and possibly other peripheral polyneuropathies.
-
Biography Historical Article
John Walton, Lord Walton of Detchant: a man of influence and goodwill.