International journal of medical informatics
-
We aimed to construct a mortality prediction model using the random forest (RF) algorithm for acute kidney injury (AKI) patients in the intensive care unit (ICU), and compared its performance with that of two other machine learning models and the customized simplified acute physiology score (SAPS) II model. ⋯ There is great potential for the RF model in mortality prediction for AKI patients in ICU. The RF model may be helpful to aid ICU clinicians to make timely clinical intervention decisions for AKI patients, which is critical to help reduce the in-hospital mortality of AKI patients. A prospective study is necessary to evaluate the clinical utility of the RF model.