Neuromodulation : journal of the International Neuromodulation Society
-
Randomized Controlled Trial
Randomized, Blinded Pilot Testing of Nonconventional Stimulation Patterns and Shapes in Parkinson's Disease and Essential Tremor: Evidence for Further Evaluating Narrow and Biphasic Pulses.
Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). ⋯ It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up.
-
Spinal cord stimulation (SCS) treats neuropathic pain through retrograde stimulation of dorsal column axons and their inhibitory effects on wide dynamic range (WDR) neurons. Typical SCS uses frequencies from 50-100 Hz. Newer stimulation paradigms use high-frequency stimulation (HFS) up to 10 kHz and produce pain relief but without paresthesia. Our hypothesis is that HFS preferentially blocks larger diameter axons (12-15 µm) based on dynamics of ion channel gates and the electric potential gradient seen along the axon, resulting in inhibition of WDR cells without paresthesia. ⋯ At clinical HFS frequencies and pulse widths, HFS preferentially blocks larger-diameter fibers and concomitantly recruits medium and smaller fibers. These effects are a result of interaction between ion gate dynamics and the "activating function" (AF) deriving from current distribution over the axon. The larger fibers that cause paresthesia in low-frequency simulation are blocked, while medium and smaller fibers are recruited, leading to paresthesia-free neuropathic pain relief by inhibiting WDR cells.
-
Randomized Controlled Trial
Noninvasive Transcutaneous Vagus Nerve Stimulation Decreases Whole Blood Culture-Derived Cytokines and Chemokines: A Randomized, Blinded, Healthy Control Pilot Trial.
The purpose of this study was to test the transcutaneous noninvasive vagus nerve stimulator (nVNS) (gammaCore©) device to determine if it modulates the peripheral immune system, as has been previously published for implanted vagus nerve stimulators. ⋯ nVNS downregulates inflammatory cytokine release suggesting that nVNS may be an effective anti-inflammatory treatment.