Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2018
Comparative Study Clinical Trial Observational StudyComparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement.
Intermittent non-invasive blood pressure measurement with tourniquets is slow, can cause nerve and skin damage, and interferes with other measurements. Invasive measurement cannot be safely used in all conditions. Modified arterial tonometry may be an alternative for fast and continuous measurement. ⋯ The readings for diastolic pressures were inside the limits recommended by AAMI. Movement increased the failure rate significantly (p < 0.001). Thus, arterial tonometry is not an appropriate replacement for invasive blood pressure measurement in these patients.
-
J Clin Monit Comput · Feb 2018
Randomized Controlled TrialThe effect of fluid resuscitation on the effective circulating volume in patients undergoing liver surgery: a post-hoc analysis of a randomized controlled trial.
To assess the significance of an analogue of the mean systemic filling pressure (Pmsa) and its derived variables, in providing a physiology based discrimination between responders and non-responders to fluid resuscitation during liver surgery. A post-hoc analysis of data from 30 patients undergoing major hepatic surgery was performed. Patients received 15 ml kg-1 fluid in 30 min. ⋯ The area under the receiver operating characteristics curve of Pvr, PPV and SVV for predicting FR was 0.75, 0.73 and 0.72, respectively. Changes in Pmsa, Pvr and EH reflect changes in effective circulating volume and heart performance following fluid resuscitation, providing a physiologic discrimination between responders and non-responders. Also, Pvr predicts FR equivalently compared to PPV and SVV, and might therefore aid in predicting FR in case dynamic preload variables cannot be used.
-
J Clin Monit Comput · Feb 2018
Cardiorespiratory instability in monitored step-down unit patients: using cluster analysis to identify patterns of change.
Cardiorespiratory instability (CRI) in monitored step-down unit (SDU) patients has a variety of etiologies, and likely manifests in patterns of vital signs (VS) changes. We explored use of clustering techniques to identify patterns in the initial CRI epoch (CRI1; first exceedances of VS beyond stability thresholds after SDU admission) of unstable patients, and inter-cluster differences in admission characteristics and outcomes. Continuous noninvasive monitoring of heart rate (HR), respiratory rate (RR), and pulse oximetry (SpO2) were sampled at 1/20 Hz. ⋯ Three different clusters of VS presentations for CRI1 were identified. Clusters varied on age, number of comorbidities and hospital length of stay. Future study is needed to determine if there are common physiologic underpinnings of VS clusters which might inform clinical decision-making when CRI first manifests.
-
J Clin Monit Comput · Feb 2018
Cross-comparisons of trending accuracies of continuous cardiac-output measurements: pulse contour analysis, bioreactance, and pulmonary-artery catheter.
We compared the similarity of cardiac-output (CO) estimates between available bolus thermodilution pulmonary-artery catheters (PAC), arterial pulse-contour analysis (LiDCOplus™, FloTrac™ and PiCCOplus™), and bioreactance (NICOM™). Repetitive simultaneous estimates of CO obtained from the above devices were compared in 21 cardiac-surgery patients during the first 2 h post-surgery. Mean and absolute values for CO across the devices were compared by ANOVA, Bland-Altman, Pearson moment, and linear-regression analyses. ⋯ From Pearson moment analysis, dynamic changes in CO, estimated by each device, showed good cross-correlations. Although all devices studied recorded similar mean CO values, which dynamically changed in similar directions, they have markedly different bias and precision values relative to each other. Thus, results from prior studies that have used one device to estimate CO cannot be used to validate others devices.
-
J Clin Monit Comput · Feb 2018
Assessing nitrous oxide effect using electroencephalographically-based depth of anesthesia measures cortical state and cortical input.
Existing electroencephalography (EEG) based depth of anesthesia monitors cannot reliably track sedative or anesthetic states during n-methyl-D-aspartate (NMDA) receptor antagonist based anesthesia with ketamine or nitrous oxide (N2O). Here, a physiologically-motivated depth of anesthesia monitoring algorithm based on autoregressive-moving-average (ARMA) modeling and derivative measures of interest, Cortical State (CS) and Cortical Input (CI), is retrospectively applied in an exploratory manner to the NMDA receptor antagonist N2O, an adjuvant anesthetic gas used in clinical practice. Composite Cortical State (CCS) and Composite Cortical State distance (CCSd), two new modifications of CS, along with CS and CI were evaluated on electroencephalographic (EEG) data of healthy control individuals undergoing N2O inhalation up to equilibrated peak gas concentrations of 20, 40 or 60% N2O/O2. ⋯ These results indicate that, contrary to previous depth of anesthesia monitoring measures, the CS, CCS, and especially CCSd measures derived from frontal EEG are potentially useful for differentiating gas concentration and responsiveness levels in people under N2O. On the other hand, determining the utility of CI in this regard will require larger sample sizes and potentially higher gas concentrations. Future work will assess the sensitivity of CS-based and CI measures to other anesthetics and their utility in a clinical environment.