Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2021
Artifact reduction by using alternating polarity stimulus pairs in intraoperative peripheral nerve action potential recording.
Intraoperative nerve action potential (NAP) recording permits direct study of an injured nerve for functional assessment of lesions in continuity. Stimulus artifact contamination often hampers NAP recording and interferes with its interpretation. In the present study, we evaluated the artifact reduction method using alternating polarity in peripheral nerve recording. ⋯ Finally, we applied the method during nerve inching and demonstrated its usefulness in intraoperative NAP recordings as the method made the recording more resilient to short conduction distances. Thus, our findings demonstrate that this artifact reduction method can be used as a supplemental tool together with our previously described bridge grounding technique or the nonlifting nerve recording configuration to further improve intraoperative peripheral nerve recording. The method can be applied in clinical settings.
-
J Clin Monit Comput · Dec 2021
Observational StudyUse of eye tracking in analyzing distribution of visual attention among critical care nurses in daily professional life: an observational study.
Patient safety is a priority in healthcare, yet it is unclear how sources of errors should best be analyzed. Eye tracking is a tool used to monitor gaze patterns in medicine. The aim of this study was to analyze the distribution of visual attention among critical care nurses performing non-simulated, routine patient care on invasively ventilated patients in an ICU. ⋯ Eye tracking is helpful to analyze the distribution of visual attention of critical care nurses. It demonstrates that the respirator, the patient data management system and the patient form cornerstones in the treatment of critically ill patients. This offers insights into complex work patterns in critical care and the possibility of improving work flows, avoiding human error and maximizing patient safety.
-
J Clin Monit Comput · Dec 2021
Clinical TrialEEG-derived pain threshold index for prediction of postoperative pain in patients undergoing laparoscopic urological surgery: a comparison with surgical pleth index.
Recently a novel pain recognition indicator derived from electroencephalogram(EEG) signals, pain threshold index(PTI) has been developed. The aim of this study was to determine whether PTI can be used for prediction of postoperative acute pain while surgical pleth index(SPI) applied as control. Eighty patients undergoing laparoscopic urological surgery under general anesthesia were enrolled. ⋯ Further analysis indicated that PTI had a best predictive accuracy reflected by highest area under curve (AUC)(0.772, 95% CI: 0.661-0.860)with sensitivity(62.50%) and specificity(90.91%) and a best positive predictive value(83.3%,95% CI: 68.4-98.2%). PTI obtained at the end of surgery, which have better predictive accuracy for postoperative pain than SPI, could differentiate the patients with moderate-to-severe pain from those with mild pain after they awaken from anesthesia. Clinical trial registration Chinese Clinical Trials Registry: ChiCTR1900024789.
-
J Clin Monit Comput · Dec 2021
Randomized Controlled TrialA mathematical model for predicting intracranial pressure based on noninvasively acquired PC-MRI parameters in communicating hydrocephalus.
To develop and validate a mathematical model for predicting intracranial pressure (ICP) noninvasively using phase-contrast cine MRI (PC-MRI). We performed a retrospective analysis of PC-MRI from patients with communicating hydrocephalus (n = 138). The patients were recruited from Shenzhen Second People's Hospital between November 2017 and April 2020, and randomly allocated into training (n = 97) and independent validation (n = 41) groups. ⋯ There was no significant difference in baseline demographic characteristics between the training and independent validation groups. The accuracy of the model for predicting ICP was 0.899 in the training cohort (n = 97) and 0.861 in the independent validation cohort (n = 41). We obtained an ICP-predicting model that showed excellent performance in the noninvasive diagnosis of clinically significant communicating hydrocephalus.
-
J Clin Monit Comput · Dec 2021
Application of a benchtop colorimetric method for quantification of blood propofol levels.
Quantification of plasma propofol (2,6-diisopropylphenol) in the context of clinical anaesthesia is challenging because of the need for offline blood sample processing using specialised laboratory equipment and techniques. In this study we sought to refine a simple procedure using solid phase extraction and colorimetric analysis into a benchtop protocol for accurate blood propofol measurement. The colorimetric method based on the reaction of phenols (e.g. propofol) with Gibbs reagent was first tested in 10% methanol samples (n = 50) containing 0.5-6.0 µg/mL propofol. Subsequently, whole blood samples (n = 15) were spiked to known propofol concentrations and processed using reverse phase solid phase extraction (SPE) and colorimetric analysis. The standard deviation of the difference between known and measured propofol concentrations in the methanol samples was 0.11 µg/mL, with limits of agreement of - 0.21 to 0.22 µg/mL. For the blood-processed samples, the standard deviation of the difference between known and measured propofol concentrations was 0.09 µg/mL, with limits of agreement - 0.18 to 0.17 µg/mL. Quantification of plasma propofol with an error of less than 0.2 µg/mL is achievable with a simple and inexpensive benchtop method.