Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2021
Observational StudyComparing the effect of positioning on cerebral autoregulation during radical prostatectomy: a prospective observational study.
Surgery in the prolonged extreme Trendelenburg position may lead to elevated intracranial pressure and compromise cerebral hemodynamic regulation. We hypothesized that robot-assisted radical prostatectomy with head-down tilt causes impairment of cerebral autoregulation compared with open retropubic radical prostatectomy in the supine position. ⋯ Compared with open radical prostatectomy in the supine position, robot-assisted surgery in the extreme Trendelenburg position with capnoperitoneum did not lead to an impairment of cerebral autoregulation during the perioperative period in our study population.
-
J Clin Monit Comput · Aug 2021
Unexpected deposits in the anesthetic circuit: a possible cause of PEEP/Pmax valve malfunction.
PEEP is regulated by the internal PEEP/maximum peak inspiratory pressure limit (Pmax) valve. Malfunctioning of the PEEP/Pmax valve can result in the creation of unintentional or unstable PEEP, and a reduction of inspired tidal volume. Some of our Dräger Fabius® anesthesia machines were noted to exhibit changes in expiratory waveforms and unstable PEEP during general anesthesia. ⋯ The build-up of deposits occurred within a year after the previous regular inspection. Our troubleshooting process determined the issue with the PEEP/Pmax valve, which could go unnoticed because the valve is encased inside the breathing circuit, and requires disassembly for close inspection. Our findings should raise awareness regarding the importance of the preventive maintenance cycle as a safety precaution to keep the anesthetic circuit free of unexpected contamination.
-
J Clin Monit Comput · Aug 2021
Observational StudyIs jugular bulb oximetry monitoring associated with outcome in out of hospital cardiac arrest patients?
Cerebral protection against secondary hypoxic-ischemic brain injury is a key priority area in post-resuscitation intensive care management in survivors of cardiac arrest. Nevertheless, the current understanding of the incidence, diagnosis and its' impact on neurological outcome remains undetermined. The aim of this study was to evaluate jugular bulb oximetry as a potential monitoring modality to detect the incidences of desaturation episodes during post-cardiac arrest intensive care management and to evaluate their subsequent impact on neurological outcome. ⋯ The episodes of brain hypoxia detected by jugular bulb oxygen saturation were rare during post-resuscitation intensive care management in out of hospital cardiac arrest patients. Therefore, this modality of monitoring may not yield any additional information towards prevention of secondary hypoxic ischemic brain injury in post cardiac arrest survivors. Other factors contributing towards high jugular venous saturation needs to be considered.
-
J Clin Monit Comput · Aug 2021
Cautionary findings for motor evoked potential monitoring in intracranial aneurysm surgery after a single administration of rocuronium to facilitate tracheal intubation.
Administration of rocuronium to facilitate intubation has traditionally been regarded as acceptable for intraoperative motor evoked potential (MEP) monitoring because of sufficiently rapid spontaneous neuromuscular blockade recovery. We hypothesized that residual neuromuscular blockade, in an amount that could hinder optimal neuromonitoring in patients undergoing intracranial aneurysm clipping, was still present at dural opening. We sought to identify how often this was occurring and to identify factors which may contribute to prolonged blockade. ⋯ There was no significant association between dosage of rocuronium based on total body weight, age, sex, or body temperature and prolonged recovery time. This study demonstrates that the duration of relaxation for MEP monitoring purposes is well-beyond the routinely recognized clinical duration of rocuronium. Residual neuromuscular blockade could result in lower amplitude MEP signals and/or lead to higher required MEP stimulus intensities which can both compromise monitoring sensitivity.