Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2024
Letter ReviewMonitor smart, use better: the future of haemodynamic monitoring.
The review article "Haemodynamic Monitoring During Noncardiac Surgery" offers valuable insights but lacks evidence linking specific haemodynamic strategies to improved outcomes. There's a need for standardized protocols, ongoing clinician education, and further validation of new technologies. Additionally, balancing the use of invasive versus noninvasive methods and addressing cost-effectiveness and sustainability are essential. Continued research and adaptive practices are crucial for optimizing perioperative care.
-
J Clin Monit Comput · Oct 2024
ReviewWearable devices as part of postoperative early warning score systems: a scoping review.
Postoperative deterioration is often preceded by abnormalities in vital parameters, but limited resources prevent their continuous monitoring in patients with no indication to ICU admission. The development of new technologies allowed the introduction of wearable devices (WDs), enabling the possibility of postoperative monitoring in surgical wards. We performed a Scoping Review to determine the current use of wearable devices as part of Continuous Remote Early Warning Score (CREWS) systems and their efficiency during postoperative period. ⋯ Furthermore, with the aid of other technologies (LoRa and Artificial Intelligence), they shorten Length of Stay (LOS) and reduce the number of ICU admissions with a reduction in healthcare costs. Continuous monitoring in surgical departments can facilitate the correct and timely identification of postoperative complications. This article is a starting point for the development of new protocols and for the application of these monitoring systems in clinical practice.
-
J Clin Monit Comput · Oct 2024
ReviewIntraoperative somatosensory evoked potential (SEP) monitoring: an updated position statement by the American Society of Neurophysiological Monitoring.
Somatosensory evoked potentials (SEPs) are used to assess the functional status of somatosensory pathways during surgical procedures and can help protect patients' neurological integrity intraoperatively. This is a position statement on intraoperative SEP monitoring from the American Society of Neurophysiological Monitoring (ASNM) and updates prior ASNM position statements on SEPs from the years 2005 and 2010. This position statement is endorsed by ASNM and serves as an educational service to the neurophysiological community on the recommended use of SEPs as a neurophysiological monitoring tool. It presents the rationale for SEP utilization and its clinical applications. It also covers the relevant anatomy, technical methodology for setup and signal acquisition, signal interpretation, anesthesia and physiological considerations, and documentation and credentialing requirements to optimize SEP monitoring to aid in protecting the nervous system during surgery.
-
J Clin Monit Comput · Oct 2024
Review Practice GuidelineIntraoperative haemodynamic monitoring and management of adults having non-cardiac surgery: Guidelines of the German Society of Anaesthesiology and Intensive Care Medicine in collaboration with the German Association of the Scientific Medical Societies.
Haemodynamic monitoring and management are cornerstones of perioperative care. The goal of haemodynamic management is to maintain organ function by ensuring adequate perfusion pressure, blood flow, and oxygen delivery. We here present guidelines on "Intraoperative haemodynamic monitoring and management of adults having non-cardiac surgery" that were prepared by 18 experts on behalf of the German Society of Anaesthesiology and Intensive Care Medicine (Deutsche Gesellschaft für Anästhesiologie und lntensivmedizin; DGAI).
-
J Clin Monit Comput · Sep 2024
ReviewA review of machine learning methods for non-invasive blood pressure estimation.
Blood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension, both of which increasing morbidity for a wide variety of reasons. ⋯ Non-invasive techniques, in contrast, reduce these risks and can provide intermittent or continuous blood pressure readings. This review explores modern machine learning-based non-invasive methods for blood pressure estimation, discussing their advantages, limitations, and clinical relevance.