Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2014
Bench test assessment of mainstream capnography during high frequency oscillatory ventilation.
To assess the feasibility, stability and predictability of pCO2 measurement (PETCO2) using a main stream capnograph in a high frequency oscillatory ventilation circuit. A commercially available capnograph was mounted into a high frequency oscillatory ventilator patient circuit, adjustable CO2 flow was introduced into an artificial lung and the output of the CO2 sensor assessed under varying ventilator settings. Influence of oxygen content, pressures, heat and moisture were recorded. ⋯ From this bench test, we conclude it is feasible to measure PETCO2 using a main stream capnograph during high frequency oscillatory conditions, these measurements were stable during the experiment. Changes in CO2 production or output can be detected. The system may prove to be of clinical value, but further in vivo measurements are warranted.
-
J Clin Monit Comput · Feb 2014
An enriched simulation environment for evaluation of closed-loop anesthesia.
To simulate and evaluate the administration of anesthetic agents in the clinical setting, many pharmacology models have been proposed and validated, which play important roles for in silico testing of closed-loop control methods. However, to the authors' best knowledge, there is no anesthesia simulator incorporating closed-loop feedback control of anesthetic agent administration freely available and accessible to the public. Consequently, many necessary but time consuming procedures, such as selecting models from the available literatures and establishing new simulator algorithms, will be repeated by different researchers who intend to explore a novel control algorithm for closed-loop anesthesia. ⋯ This simulator could be a benchmark-testing platform for closed-loop control of anesthesia, which is of great value and has significant development potential. For convenience, this simulator is termed as Wang's Simulator, which can be downloaded from http://www. AutomMed.org .
-
J Clin Monit Comput · Feb 2014
Evaluation of the estimated continuous cardiac output monitoring system in adults and children undergoing kidney transplant surgery: a pilot study.
Evaluation of the estimated continuous cardiac output (esCCO) allows non-invasive and continuous assessment of cardiac output. However, the applicability of this approach in children has not been assessed thus far. We compared the correlation coefficient, bias, standard deviation (SD), and the lower and upper 95 % limits of agreement for esCCO and dye densitography-cardiac output (DDG-CO) measurements by pulse dye densitometry (PDD) in adults and children. ⋯ However, the agreement between esCCO and DDG-CO seems to be higher in children than in adults. These results suggest that esCCO can also be used in children. Future studies with bigger study populations will be required to further investigate these conclusions.
-
J Clin Monit Comput · Feb 2014
Randomized Controlled TrialUse of a decision support system improves the management of hemodynamic and respiratory events in orthopedic patients under propofol sedation and spinal analgesia: a randomized trial.
Decision support systems (DSSs) have been successfully implemented into clinical practice offering clinical suggestions and treatment options with excellent results in various clinical settings. Although their results appeared promising, showing that DSSs can increase anesthesiologists' vigilance and patient safety during surgery, DSSs have never been used before to help anesthesiologists in identifying critical events in patients under spinal analgesia with sedation. We have developed and clinically evaluated a DSS for this specific task. ⋯ The number of critical events/h occurring and the duration of surgery were similar in both groups. The number of hypoxemia episodes was significantly less (P = 0.036) in the DSS group (0.7 ± 1.0 vs. 1.4 ± 2.2 for the Control Group). The DSS tested in this trial could help the clinician to detect and treat critical events more efficiently and in a shorter length of time.