Adv Exp Med Biol
-
Opioids such as morphine are potent analgesic and addictive compounds. Chronic morphine use also induces immunomodulatory and immunosuppressive effects, as especially evident in HIV-infected patients. Morphine acts on the immune cells primarily through its binding to mu-opioid receptors on the plasma membrane. ⋯ The results of the competitive RT/PCR indicated that CEM x174 cells expressed KOR mRNA constitutively, in the order of femto-grams. Treatment of 10 microM of morphine resulted in the up-regulation of KOR gene expression 24 hr post-treatment. The observed morphine effect could be reversed by treating the cells with either naloxone (a KOR-partially selective antagonist) or nor-Binaltorphimine (a KOR-selective antagonist).
-
Hyperbaric oxygen (HBO2) at approximately 3 atmospheres absolute (ATA) pressure is toxic to the mammalian CNS due to excessive O2 free radical production. No study has ever determined the effects of < or = 3 ATA of O2 on the membrane potential and firing rate of neurons in the mammalian brainstem. Likewise, no study has ever determined the effects of < or = 3 ATA pressure per se on brainstem neurons. ⋯ Three of 8 neurons depolarized by HBO2 were also depolarized by hyperbaric helium, usually with an additional change in Rin. We conclude that hydrostatic (helium) pressure and HBO2 independently increase excitability in certain solitary complex neurons. We hypothesize that these responses contribute, in part, to neural events that either precede or occur during CNS O2 toxicity.
-
Small, muscular pulmonary arteries (PAs) constrict within seconds of the onset of alveolar hypoxia, diverting blood flow to better-ventilated lobes, thereby matching ventilation to perfusion and optimizing systemic PO2. This hypoxic pulmonary vasoconstriction (HPV) is enhanced by endothelial derived vasoconstrictors, such as endothelin, and inhibited by endothelial derived nitric oxide. However, the essence of the response is intrinsic to PA smooth muscle cells in resistance arteries (PASMCs). ⋯ However, inhibition of complex 1 of the mitochondrial electron transport chain mimics hypoxia in that it inhibits IK, reduces the production of activated O2 species and causes vasoconstriction. We hypothesize that a redox O2 sensor, perhaps in the mitochondrion, senses O2 through changes in the accumulation of freely diffusible electron donors. Changes in the ratio of reduced/oxidized redox couples, such as NADH/NAD+ and glutathione (GSH/GSSG) can reduce or oxidize the K+ channels, resulting in alterations of PA tone.