Adv Exp Med Biol
-
Hyponatremia is common in advanced heart failure and relates to the severity of the disease. Non-osmotic arginine vasopressin (AVP) release and biosynthesis have been shown to be increased during chronic cardiac failure (CHF) and baroreceptors pathways have been demonstrated to play a major role in this non-osmotic stimulation of AVP. Decreased cardiac output unloads the baroreceptors and activates the sympathetic nervous system, thus stimulating AVP through a separate pathway which overrides the osmotic pathway. ⋯ This AQP2 upregulation can be entirely suppressed by V2 receptor AVP antagonists paralleling the correction of the hyponatremia. Thus, non-osmotic release of AVP in CHF upregulates AQP2 water channels, enhances water reabsorption and causes hyponatremia. The V1, and perhaps the V2, receptor activation may also diminish cardiac function.
-
Vasopressin (AVP) and oxytocin (OT) are cyclic nonapeptides whose actions are mediated by activation of specific G protein-coupled receptors (GPCRs) currently classified into V1-vascular (V1R), V2-renal (V2R) and V3-pituitary (V3R) AVP receptors and OT receptors (OTR). The cloning of the different members of the AVP/OT family of receptors now allows the extensive molecular pharmacological characterization of a single AVP/OT receptor subtype in stably transfected mammalian cell lines. The human V1-vascular (CHO-V1), V2-renal (CHO-V2), V3-pituitary (CHO-V3) and oxytocin (CHO-OT) receptors stably expressed in CHO cells display distinct binding profiles for 18 peptide and 5 nonpeptide AVP/OT analogs. ⋯ None of the 22 AVP/OT analogs tested has a better affinity for the human V3R than AVP itself. Several peptide antagonists do not select well between V1R and OTR. These results underscore the need for developing specific and potent analogs interacting specifically with a given human AVP/OT receptor subtype.
-
Adipose tissue triacylglycerol (TG) constitutes by far the largest energy store in the body. In order for this TG to be used as a substrate for oxidative metabolism, it has to be exported from adipose tissue and transported to the tissues where it will be used. Following hydrolysis of stored TG, non-esterified fatty acids (NEFA) leave the adipocyte and enter the plasma. ⋯ However, much of the evidence for this derives from studies of isolated adipocytes, and confirmation in vivo is much needed. There are links between abdominal fat deposition and risk of cardiovascular disease which may be mediated through increased fatty acid delivery from abdominal fat depots. The ability of exercise specifically to decrease intra-abdominal fat stores may be yet another health benefit of regular exercise.
-
The molecular mechanisms governing the G protein coupling selectivity of different members of the vasopressin receptor family were studied by using a combined molecular genetic/biochemical approach. While the V1a and V1b vasopressin receptors are selectively linked to G proteins of the Gq/11 class, the V2 vasopressin receptor is preferentially coupled to Gs. Systematic functional analysis of V1a/V2 hybrid receptors showed that the second intracellular loop of the V1a receptor is required and sufficient for efficient coupling to Gq/11, whereas the third intracellular loop of the V2 receptor is required and sufficient for coupling to Gs. ⋯ Following adenovirus infection, arginine vasopressin (AVP) gained the ability to stimulate cAMP formation in all CHO cell clones studied. Adenovirus-mediated gene transfer also proved to be a highly efficient method to achieve expression of the V2-tail fragment (as well as of the wild type V2 vasopressin receptor) in MDCK renal tubular cells. We therefore speculate that the targeted expression of receptor fragments in vivo may represent a novel strategy in the treatment of human diseases caused by inactivating mutations in distinct G protein-coupled receptors.
-
As with diphtheria, immunity to pertussis is complex because it involves both individual and community protection against infection with B. pertussis. Although B. pertussis has at least five proteins required for virulence and an additional two "toxic" components, only serum neutralizing antibodies to PT (antitoxin) have been shown to confer immunity to pertussis.