J Transl Med
-
With the aim of providing a dynamic evaluation of the effects of basic environmental parameters on COVID-19-related death rate, we assessed the correlation between average monthly high temperatures and population density, with death/rate (monthly number of deaths/1 M people) for the months of March (start of the analysis and beginning of local epidemic in most of the Western World, except in Italy where it started in February) and April 2020 (continuation of the epidemic). Different geographical areas of the Northern Hemisphere in the United States and in Europe were selected in order to provide a wide range among the different parameters. The death rates were gathered from an available dataset. As a further control, we also included latitude, as a proxy for temperature. ⋯ The number of COVID-19-related deaths/1 M people was essentially the same during the month of March for all the geographical areas considered, indicating essentially that the infection was circulating quite uniformly except for Lombardy, Italy, where it started earlier. Lockdown measures were implemented between the end of March and beginning of April, except for Italy which started March 9th. We observed a strong, statistically significant inverse correlation between average monthly high temperatures with the number of deaths/1 M people. We confirmed the data by analyzing the correlation with the latitude, which can be considered a proxy for high temperature. Previous studies indicated a negative effect of high climate temperatures on Sars-COV-2 spreading. Our data indicate that social distancing measure are more successful in the presence of higher average monthly temperatures in reducing COVID-19-related death rate, and a high level of population density seems to negatively impact the effect of lockdown measures.
-
On December 12th 2019, a new coronavirus (SARS-Cov2) emerged in Wuhan, China, sparking a pandemic of acute respiratory syndrome in humans (COVID-19). On the 24th of April 2020, the number of COVID-19 deaths in the world, according to the COVID-Case Tracker by Johns Hopkins University, was 195,313, and the number of COVID-19 confirmed cases was 2,783,512. The COVID-19 pandemic represents a massive impact on human health, causing sudden lifestyle changes, through social distancing and isolation at home, with social and economic consequences. Optimizing public health during this pandemic requires not only knowledge from the medical and biological sciences, but also of all human sciences related to lifestyle, social and behavioural studies, including dietary habits and lifestyle. ⋯ In this study, we have provided for the first time data on the Italian population lifestyle, eating habits and adherence to the Mediterranean Diet pattern during the COVID-19 lockdown. However, as the COVID-19 pandemic is ongoing, our data need to be confirmed and investigated in future more extensive population studies.
-
COVID-19 has rapidly spread all over the world, progressing into a pandemic. This situation has urgently impelled many companies and public research institutes to concentrate their efforts on research for effective therapeutics. Here, we outline the strategies and targets currently adopted in developing a vaccine against SARS-CoV-2. Based on previous evidence and experience with SARS and MERS, the primary focus has been the Spike protein, considered as the ideal target for COVID-19 immunotherapies.