The Journal of clinical endocrinology and metabolism
-
J. Clin. Endocrinol. Metab. · Oct 2001
Randomized Controlled Trial Clinical TrialGenetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol.
The aims of this study were to examine the presence of mutations in the low-density lipoprotein receptor gene among subjects clinically diagnosed with familial hypercholesterolemia and to analyze whether the molecular diagnosis helps to predict the response to simvastatin treatment in our familial hypercholesterolemia population. Fifty-five probands and 128 related subjects with familial hypercholesterolemia were studied. Genetic diagnosis was carried out following a three-step protocol based on Southern blot and PCR-single strand conformational polymorphism analysis. ⋯ Baseline and posttreatment high-density lipoprotein cholesterol plasma values were significantly lower in subjects with familial hypercholesterolemia with null mutations (P < 0.001). In an outbreed Caucasian population, a three-step protocol for genetic screening detected a mutation in the low-density lipoprotein receptor gene in a high percentage (84%) of subjects with familial hypercholesterolemia. Subjects with familial hypercholesterolemia with null mutations (class I) showed lower plasma high-density lipoprotein cholesterol values and a poor low-density lipoprotein cholesterol response to simvastatin treatment.
-
J. Clin. Endocrinol. Metab. · Oct 2001
Randomized Controlled Trial Clinical TrialSkeletal muscle PGF(2)(alpha) and PGE(2) in response to eccentric resistance exercise: influence of ibuprofen acetaminophen.
PGs have been shown to modulate skeletal muscle protein metabolism as well as inflammation and pain. In nonskeletal muscle tissues, the over the counter analgesic drugs ibuprofen and acetaminophen function through suppression of PG synthesis. We previously reported that ibuprofen and acetaminophen inhibit the normal increase in skeletal muscle protein synthesis after high intensity eccentric resistance exercise. ⋯ However, the exercise-induced change in PGE(2) in the placebo group (64%) was only significantly different (P < 0.05) from that in the acetaminophen group (-16%). The exercise-induced changes in PGF(2alpha) and PGE(2) were not different between the ibuprofen and acetaminophen groups. These results suggest that ibuprofen and acetaminophen have a comparable effect on suppressing the normal increase in PGF(2alpha) in human skeletal muscle after eccentric resistance exercise, which may profoundly influence the anabolic response of muscle to this form of exercise.