Journal of neurophysiology
-
1. Localization of sounds has traditionally been considered to be performed by a duplex mechanism utilizing interaural temporal differences (ITDs) at low frequencies and interaural intensity differences at higher frequencies. More recently, it has been found that listeners can detect ITDs at high frequencies if the amplitude of the sound varies and an ITD is present in the envelope. ⋯ At lower modulation frequencies (< 150 Hz) characteristic delays often lay beyond +/- 300 microseconds. 7. Increasing the ipsilateral intensity tended to shift the preferred delay ipsilaterally at lower (< 250 Hz), but not at higher, modulation frequencies. 8. When tested with pure tones, a substantial number of peak-type neurons were found to be excited by contralateral stimulation but inhibited by ipsilateral stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. We have studied the sensations evoked by threshold microstimulation (TMS) in the area of the human principal sensory nucleus of the thalamus [ventralis caudalis (Vc)] in patients (n = 11) undergoing stereotactic surgery for the treatment of movement disorders and pain. Preoperatively, patients were trained to describe somatic sensory stimuli using a standard list of descriptors. ⋯ The location of the sensation evoked by stimulation [projected field (PF)] varied widely in size. PFs were categorized as large if they involved more than one part of the body (e.g., face and arm) or if they crossed at least one joint proximal to the metacarpophalangeal joint or to the metatarsophalangeal joint. PFs were more frequently large at sites where thermal/pain sensations were evoked by TMS (33%) than at those where paresthesia were evoked (6%).(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. The electroresponsive properties of neurons from layer II of the rat medial entorhinal cortex (MEC) were studied by intracellular recording under current clamp in an in vitro brain slice preparation. From a total of 184 cells that fulfilled our criteria for recording stability, two groups of projection neurons were distinguished on the basis of their intrinsic biophysical properties and morphological characteristics (demonstrated by intracellular biocytin injection; n = 34). 2. ⋯ First, most SCs displayed a bilinear frequency-current (f-I) relationship for only the first interspike interval, whereas most non-SCs displayed a bilinear relationship for all intervals. Second, SCs had a much steeper primary f-I slope for early intervals than non-SCs. Finally, SCs displayed more pronounced and faster spike frequency adaptation than non-SCs.(ABSTRACT TRUNCATED AT 400 WORDS)
-
1. Intracellular recordings were made from the output neurons (mitral and tufted cells) of the rat olfactory bulb during electrical orthodromic stimulation of the olfactory nerve layer (ONL) and antidromic stimulation of the lateral olfactory tract and posterior piriform cortex (pPC) to test for physiological differences among the neuron types. Many of these neurons were identified by intracellular injections of biocytin, and others were identified by their pattern of antidromic activation. 2. ⋯ For both mitral and tufted cells, the number of ONL electrodes evoking IPSPs was greater than the number evoking spikes. These data suggest a kind of center-surround organization of inputs to these cells from the ONL, although this does not yet imply that the sensory receptive field of these output cells has a center-surround organization. 6. In conclusion, the properties of rat olfactory bulb output cells correlate with the sublayers of the EPL in which their basal dendrites lie.(ABSTRACT TRUNCATED AT 400 WORDS)