Journal of neurophysiology
-
Comparative Study
Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex.
1. To understand roles played by two cortical motor areas, the presupplementary motor area (pre-SMA) and supplementary motor area (SMA), in changing planned movements voluntarily, cellular activity was examined in two monkeys (Macaca fuscata) trained to perform an arm-reaching task in which they were asked to press one of two target buttons (right or left) in three different task modes. 2. In the first mode (visual), monkeys were visually instructed to result and press either a right or left key in response to a forth coming trigger signal. ⋯ Neurons exhibiting the shift-related activity were distributed differentially among the two areas. In the pre-SMA, 31% of the neurons recorded showed the shift-related activity, whereas in the SMA, only 7% showed such an activity. These results suggest that pre-SMA and SMA play differential roles in updating the motor plans in accordance with current requirements.
-
1. The purpose of this study was to investigate a proposed role for the postsynaptic dorsal column (PSDC) pathway in mediating visceral nociceptive input into the dorsal column (DC) nuclei. 2. In one group of animals, the hypogastric nerves were sectioned, thereby restricting colorectal input into the cord to pelvic afferent pathways known to coverage on lower lumbar and sacral segments. ⋯ From the results of the studies described in this and the companion paper, we conclude that there is an important pelvic visceral nociceptive pathway involving PSDC neurons that synapse in the NG. The NG in turn activates neurons in the ventral posterolateral (VPL) nucleus of the thalamus. We presume that activation of VPL neurons by noxious visceral stimulation contributes to visceral pain sensation and thus that pelvic visceral pain depends largely on activity in the DC-medial lemniscus system.
-
1. The involvement of N-methyl-D-aspartate (NMDA) receptors in thalamocortical transmission has been demonstrated in early postnatal development, but could not be determined so far in adult animals. We used thalamocortical slices from brains of mature mice to examine whether NMDA receptors exist in adult thalamocortical synapses, and what is their potential contribution to thalamocortical synaptic responses. 2. ⋯ All cells that showed a monosynaptic response to electrical thalamic stimulation also exhibited a barrage of mixed synaptic responses to thalamic glutamate application. The amplitude of these synaptic events was dependent strongly on the membrane voltage, and the application of APV to the cortex abolished the events completely. 7. Our results demonstrate that, in adult animals, both thalamocortical and intracortical synaptic pathways utilize NMDA as well as non-NMDA receptors.
-
1. Electrophysiological properties of acutely dissociated neurons from the major pelvic ganglion (MPG) of the adult male rat were studied with whole cell patch-clamp recording techniques. The MPG neurons innervating the urinary bladder were labeled by retrograde axonal tracing methods with the use of a fluorescent dye, Fast Blue (FB) injected into the bladder wall and identified with a fluorescent microscope. 2. ⋯ Extracellularly applied TEA (10 mM) suppressed the delayed K+ current by 90%, but suppressed the IA current by only 16%. 6. These results indicate that bladder neurons and unidentified neurons in the MPG have similar properties including a TTX-sensitive Na+ current and three distinct types of voltage-sensitive K+ currents-IA current, Ca(2+)-activating K+ current, and delayed rectifier K+ current-that contribute to the repolarization phase of the action potential. These electrical properties of the MPG neurons resemble those of sympathetic neurons in the superior cervical and inferior mesenteric ganglia.
-
Comparative Study
Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
1. Posture, hindlimb kinematics, and activity patterns of selected hindlimb muscles were compared for normal and crouched treadmill walking (0.5-0.6 m/s) for eight cats. To elicit crouched walking in which the trunk and head were lowered, cats were encouraged to walk under a light-weight Plexiglas ceiling suspended 17-20 cm above the treadmill belt. ⋯ Postural set during walking appears to be determined by brain stem and diencephalic centers, and the postural orientation of the cat may require adjustments in the motor program provided by spinal centers for the cat to walk. The role of posture and locomotion and the adjustments in hindlimb kinematics and EMG activity patterns have been studied for forward and backward walking in the cat and now for crouched walking on the treadmill. These data will assist us in understanding the role of posture, especially crouched posture, during other walking behaviors.