Journal of neurophysiology
-
We investigated the hypoxia-induced disturbance of cytosolic sodium concentration ([Na+]i) and of cytosolic calcium concentration ([Ca2+]i) in dopamine neurons of the substantia nigra pars compacta in rat midbrain slices, by combining whole cell patch-clamp recordings and microfluorometry. Transient hypoxia (3-5 min) induced an outward current (118.7 +/- 15.1 pA, mean +/- SE; VH = -60 mV). The development of this outward current was associated with an elevation in [Na+]i and in [Ca2+]i. ⋯ Decreasing the concentration of extracellular Na+ to 19.2 mM depressed the hypoxia-induced outward current and resulted in a decrease in resting [Na+]i. Under this condition hypoxia still increased [Na+]i, albeit to levels not exceeding those of resting [Na+]i observed under control conditions. We conclude that 1) a major component of the hypoxia-induced outward current of these cells is caused by a depletion of intracellular ATP in combination with an increase in [Na+]i, 2) that the [Na+]i and [Ca2+]i responses are not mediated by glutamate receptors, 3) that the [Na+]i and [Ca2+]i responses are not depressed by activation of sulfonylurea receptors, and 4) that the rise in [Na+]i induced by short-lasting hypoxia is not due to a ATP depletion-induced failure of Na+ extrusion.
-
The cortical processing of vestibular information is not hierarchically organized as the processing of signals in the visual and auditory modalities. Anatomic and electrophysiological studies in the monkey revealed the existence of multiple interconnected areas in which vestibular signals converge with visual and/or somatosensory inputs. Although recent functional imaging studies using caloric vestibular stimulation (CVS) suggest that vestibular signals in the human cerebral cortex may be similarly distributed, some areas that apparently form essential constituents of the monkey cortical vestibular system have not yet been identified in humans. ⋯ Although undetected in previous imaging-studies using CVS, involvement of these areas could be predicted from anatomic data showing projections from the anterior ventral part of area 6 to the inner vestibular circle and the vestibular nuclei. Using a simple paradigm, we showed that GVS can be implemented safely in the fMRI environment. Manipulating stimulus waveforms and thus the GVS-induced subjective vestibular sensations in future imaging studies may yield further insights into the cortical processing of vestibular signals.
-
Modulation of sacral spinal dorsal horn neurons by the ventrolateral PAG was studied by extracellular recording combined with microiontophoretic applications of alpha-adrenergic agonists or antagonists. Bicuculline (BIC, 15 ng) microinjected into the ventrolateral PAG produced a consistent inhibition of the responses of nociceptive dorsal horn neurons. After PAG-BIC applications, the total number of spikes per heat stimulation period was significantly decreased to a mean of 37 +/- 19% (n = 8) of the pre-BIC control. ⋯ Activation of the alpha1 adrenoceptors by iontophoresis of methoxamine often led to a marked increase in the responses to kainic acid and, to a lesser extent, to NMDA iontophoresis or noxious heat. Together with previously reported work, the current experiments demonstrate that PAG neurons inhibit nociceptive dorsal horn neurons primarily through an indirect alpha2 adrenoceptor mechanism. In this same population of dorsal horn neurons, norepinephrine has a direct alpha1-mediated excitatory effect.