Journal of neurophysiology
-
The development of receptor function at corticothalamic synapses during the first 20 days of postnatal development is described. Whole cell excitatory postsynaptic currents (EPSCs) were evoked in relay neurons of the ventral posterior nucleus (VP) by stimulation of corticothalamic fibers in in vitro slices of mouse brain from postnatal day 1 (P1). During P1-P12, excitatory postsynaptic conductances showed strong voltage dependence at peak current and at 100 ms after the stimulus and were almost completely antagonized by -2-amino-5-phosphonopentoic acid (APV), indicating that N-methyl--aspartate (NMDA) receptor-mediated currents dominate corticothalamic EPSCs at this time. ⋯ In voltage clamp, the extrapolated reversal potential of the t-ACPD current, with potassium gluconate-based internal solution, was +12 +/- 10 (SE) mV, and the measured reversal potential with cesium gluconate-based internal solution was 1.5 +/- 9.9 mV, suggesting that the mGluR-mediated depolarization was mediated by a nonselective cation current. Replacement of NaCl in the external solution caused the reversal potential of the current to shift to -18 +/- 2 mV, indicating that Na+ is a charge carrier in the current. The current amplitude was not reduced by application of Cs+, Ba2+, and Cd2+, indicating that the t-ACPD current was distinct from the hyperpolarization-activated cation current (IH) and distinct from certain other previously characterized mGluR-activated, nonselective cation conductances.
-
Comparative Study
GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat.
Discrimination of amplitude and frequency modulated sounds is an important task of auditory processing. Experiments have shown that tuning of neurons to sinusoidally frequency- and amplitude-modulated (SFM and SAM, respectively) sounds becomes successively narrower going from lower to higher auditory brain stem nuclei. In the inferior colliculus (IC), many neurons are sharply tuned to the modulation frequency of SFM sounds. ⋯ In a minority of neurons, direction selectivity was abolished by drug application. The main finding was that neuronal inhibition sharpens tuning to the modulation frequency in the majority of neurons. In general, changes induced by bicuculline or strychnine were comparable.