Journal of neurophysiology
-
The neural relationships between eyelid movements and eye movements during spontaneous, voluntary, and reflex blinking in a group of healthy subjects were examined. Electromyographic (EMG) recording of the orbicularis oculi (OO) muscles was performed using surface electrodes. Concurrently, horizontal and vertical eye positions were recorded by means of the double magnetic induction (DMI) ring method. ⋯ Late components of the eye movements slightly precede the late components of the eyelid movement. Synchrony between late components of eyelid movements and eye movements as well as similarity of oblique eye movement components in different types of blinking suggest the existence of a premotor neural structure acting as a generator that coordinates impulses to different subnuclei of the oculomotor nucleus as well as the facial nerve nucleus during blinking independent from the ocular saccadic and/or vergence system. The profile and direction of the eye movement rotation during blinking gives support to the idea that it may be secondary to eyeball retraction; an extra cocontraction of the inferior and superior rectus muscle would be sufficient to explain both eye retraction and rotation in the horizontal vertical and torsional planes.
-
Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. ⋯ These data support our hypothesis that the anti-epileptic effects of chloride-cotransport antagonism in CA1 are mediated through the desynchronization of population activity. We hypothesize that interference with Na(+),K(+),2Cl(-) cotransport results in an increase in extracellular potassium ([K(+)](o)) that reduces the number of action potentials that are able to invade axonal arborizations and varicosities in all hippocampal subregions. This reduced efficacy of presynaptic action potential propagation ultimately leads to a reduction of synaptic drive and a desynchronization of the firing of CA1 pyramidal cells.
-
To investigate voltage-gated potassium channels underlying action potentials (APs), we simultaneously recorded neuronal APs and single K(+) channel activities, using dual patch-clamp recordings (1 whole cell and 1 cell-attached patch) in single-layer V neocortical pyramidal neurons of rat brain slices. A fast voltage-gated K(+) channel with a conductance of 37 pS (K(f)) opened briefly during AP repolarization. Activation of K(f) channels also was triggered by patch depolarization and did not require Ca(2+) influx. ⋯ This study provides direct evidence for different roles of various K(+) channels during action potentials in layer V neocortical pyramidal neurons. K(f) and K(A) channels contribute to AP repolarization, while K(A) channels also regulate repetitive firing. K(dr) channels also may function in regulating repetitive firing, whereas BK channels appear to be activated only in pathological conditions.