Journal of neurophysiology
-
Comparative Study
Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons.
In the CNS, inhibitory synaptic function undergoes profound transformation during early postnatal development. This is due to variations in the subunit composition of subsynaptic GABA(A) receptors (GABA(A)Rs) at differing developmental stages as well as other factors. These include changes in the driving force for chloride-mediated conductances as well as the quantity and/or cleft lifetime of released neurotransmitter. ⋯ These data demonstrate that inhibitory synaptic transmission undergoes a markedly protracted postnatal maturation in rat CA1 pyramidal neurons. In the first two postnatal weeks, mIPSCs are large in amplitude, are slow, and occur infrequently. By the third postnatal week, mIPSCs have matured kinetically but retain distinct responses to modulatory drugs, possibly reflecting continued immaturity in synaptic structure and function persisting through adolescence.
-
During specific rapid eye movement (REM) sleep deprivation its homeostatic regulation is expressed by progressively more frequent attempts to enter REM and by a compensatory rebound after the deprivation ends. The buildup of pressure to enter REM may be hypothesized to depend just on the time elapsed without REM or to be differentially related to non-REM (NREM) and wakefulness. This problem bears direct implications on the issue of the function of REM and its relation to NREM. ⋯ Medians of REM rebound in the three succeeding hours, in minutes above baseline, were, respectively, 8 (44%), 9 (53%), and 9 (50%), showing no significant differences among protocols. Attempted transitions to REM showed a rising trend during REM deprivations reaching a final value that did not differ significantly among the three protocols. These results support the hypothesis that the build up of REM pressure and its subsequent rebound is primarily related to REM absence independent of the presence of NREM.
-
We used a "current signature" method to subclassify acutely dissociated dorsal root ganglion (DRG) cells into nine subgroups. Cells subclassified by current signature had uniform properties. The type 1 cell had moderate capsaicin sensitivity (25.9 pA/pF), powerful, slowly desensitizing (tau = 2,300 ms), ATP-activated current (13.3 pA/pF), and small nondesensitizing responses to acidic solutions (5.6 pA/pF). ⋯ Type 7 cells were IB4 positive and contained both SP and CGRP-IR. They exhibited an exceptionally long afterhyperpolarization (110 ms) that was suggestive of a silent (mechanically insensitive) nociceptor. We concluded that presorting of DRG cells by current signatures separated them into internally homogenous subpopulations that were distinct from other subclassified cell types.