Journal of neurophysiology
-
Fentanyl, a mu-opioid receptor agonist, produces analgesia while leaving vibrotactile sensation intact. We used positron emission tomography (PET) to study the mechanisms mediating this specific effect in healthy, right-handed human males (ages 18-28 yr). Subjects received either painful cold (n = 11) or painless vibratory (n = 9) stimulation before and after the intravenous injection of fentanyl (1.5 microgram/kg) or placebo (saline). ⋯ In addition, fentanyl, compared with placebo, produces a unique activation of the mid-anterior cingulate cortex during fentanyl analgesia, suggesting that this region of the cingulate cortex participates actively in mediating opioid analgesia. The results are consistent with a selective, fentanyl-mediated suppression of nociceptive spinothalamic transmission to the forebrain. This effect could be implemented directly at the spinal level, indirectly through cingulate corticofugal pathways, or by a combination of both mechanisms.
-
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. ⋯ These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.
-
Primary sensory neurons with myelinated axons were examined in vitro in excised whole lumbar dorsal root ganglia (DRGs) taken from adult rats up to 9 days after tight ligation and transection of the L(5) spinal nerve (Chung model of neuropathic pain). Properties of subthreshold membrane potential oscillations, and of repetitive spike discharge, were examined. About 5% of the DRG neurons sampled in control DRGs exhibited high-frequency, subthreshold sinusoidal oscillations in their membrane potential at rest (V(r)), and an additional 4.4% developed such oscillations on depolarization. ⋯ Tactile allodynia following spinal nerve injury is thought to result from central amplification ("central sensitization") of afferent signals entering the spinal cord from residual intact afferents. The central sensitization, in turn, is thought to be triggered and maintained in the Chung model by ectopic firing originating in the axotomized afferent neurons. Axotomy by spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons, augments ectopic discharge, and hence precipitates neuropathic pain.
-
Neurons can display sexual dimorphism in receptor expression, neurotransmitter release, and synaptic plasticity. We have detected sexual dimorphism in functional tachykinin receptors in vagal afferents (nodose ganglion neurons, NGNs) by studying the effects of hormonal variation on the depolarizing actions of substance P (SP) in female guinea pig NGNs. Using conventional "sharp" microelectrode recording plus measurement of serum 17beta-estradiol values, we examined SP responses in NGNs isolated from 1) ovariectomized females (OVX), 2) OVX females treated with 17beta-estradiol (OVX + E2), 3) pregnant females, and 4) males. ⋯ The percentage of SP-sensitive NGNs from OVX females (19%, 21/109; 15 +/- 1.9 mV) was not significantly different (P = 0.361) from that of control males (13%, 11/83; 13 +/- 2.0 mV). The serum 17beta-estradiol values for OVX + E2, pregnant, and OVX females were 23.9 +/- 3.3 pg/ml (n = 8), 16.0 +/- 2.4 pg/ml (n = 4), and 3.9 +/- 0.3 pg/ml (n = 8), respectively. These data indicate that there is a gender difference in NK-1 receptor expression in guinea pig nodose neurons, and they suggest that estrogen may modulate SP responsiveness in these neurons.
-
Mammalian vestibular organs have two types of hair cell, type I and type II, which differ morphologically and electrophysiologically. Type I hair cells alone express an outwardly rectifying current, I(K, L), which activates at relatively negative voltages. We used whole cell and patch configurations to study I(K,L) in hair cells isolated from the sensory epithelia of rat semicircular canals. ⋯ Ca(2+)-dependent NO synthase is reported to be in hair cells and nerve terminals in the vestibular epithelium. Excitatory input to vestibular organs may lead, through Ca(2+) influx, to NO production and inhibition of I(K,L). The resulting increase in R(m) would augment the receptor potential, a form of positive feedback.