Journal of neurophysiology
-
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. ⋯ These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.
-
The effects of dopamine (DA) on a persistent Na(+) current (I(NaP)) in layer V-VI prefrontal cortical (PFC) pyramidal cells were studied using whole cell voltage-clamp recordings in rat PFC slices. After blocking K(+) and Ca (2+) currents, a tetrodotoxin-sensitive I(NaP) was activated by slow depolarizing voltage ramps or voltage steps. DA modulated the I(NaP) in a voltage-dependent manner: increased amplitude of I(NaP) at potentials more negative than -40 mV, but decreased at more positive potentials. ⋯ This was associated with a shift in the start of nonlinearity in the slope resistance to more negative membrane potentials. We proposed that this effect is due to a D1/D5 agonist-induced leftward shift in the activation of I(NaP). This enables DA to facilitate the firing of PFC neurons in response to depolarizing inputs.