Journal of neurophysiology
-
We have investigated whether neurons in superficial laminae of the spinal dorsal horn respond to intracutaneous (ic) delivery of histamine and other irritant chemicals, and thus might be involved in signaling sensations of itch or chemogenic pain. Single-unit recordings were made from superficial lumbar dorsal horn neurons in pentobarbital sodium-anesthetized rats. Chemoresponsive units were identified using ic microinjection of histamine (3%, 1 microl) into the hindpaw as a search stimulus. ⋯ In contrast, deep dorsal horn neuronal responses to both histamine and noxious heat were primarily depressed by low concentrations of morphine in a naloxone-reversible manner. These results indicate that superficial dorsal horn neurons respond to both pruritic and algesic chemical stimuli and thus might participate in transmitting sensations of itch and/or chemogenic pain. The facilitation of superficial neuronal responses to histamine by low concentrations of morphine, coupled with inhibition of deep dorsal horn neurons, might underlie the development of pruritus that is often observed after epidural morphine.
-
Previously, it was determined that microinjection of morphine into the caudal portion of subnucleus caudalis mimicked the facilitatory effects of intravenous morphine on cornea-responsive neurons recorded at the subnucleus interpolaris/caudalis (Vi/Vc) transition region. The aim of the present study was to determine the opioid receptor subtype(s) that mediate modulation of corneal units and to determine whether opioid drugs affected unique classes of units. Pulses of CO(2) gas applied to the cornea were used to excite neurons at the Vi/Vc ("rostral" neurons) and the caudalis/upper cervical spinal cord transition region (Vc/C1, "caudal" neurons) in barbiturate-anesthetized male rats. ⋯ It was concluded that the circuitry for opioid analgesia in corneal pain involves multiple sites of action: inhibition of neurons at the caudal transition region, by intersubnuclear connections to modulate rostral units, and by supraspinal sites. Local administration of opioid agonists modulated all classes of corneal units. Corneal stimulus modality was predictive of efferent projection status for rostral and caudal units to sensory thalamus and reflex areas of the brain stem.
-
In this study, we used sensory neuron specific (SNS) sodium channel gene knockout (-/-) mice to ask whether SNS sodium channel produces the slow Na(+) current ("slow") in large (>40 microm diam) cutaneous afferent dorsal root ganglion (DRG) neurons. SNS wild-type (+/+) mice were used as controls. Retrograde Fluoro-Gold labeling permitted the definitive identification of cutaneous afferent neurons. ⋯ The fast Na(+) current density in SNS (-/-) neurons was 1.47 +/- 0. 14 nA/pF, approximately 60% higher than the current density observed in SNS (+/+) mice (P < 0.02). A low-voltage-activated TTX-R Na(+) current ("persistent") observed in small C-type neurons is not present in large cutaneous afferent neurons from either SNS (+/+) or SNS (-/-) mice. These results show that the slow TTX-R Na(+) current in large cutaneous afferent DRG is produced by the SNS sodium channel.
-
To investigate whether the simian light reflex is a reasonable model for the human light reflex, we elicited pupillary responses in three behaving rhesus macaques. We measured the change in pupillary area in response to brief (100 ms), intermediate (1 s), and long (3-5 s) light flashes delivered by light-emitting diodes while the monkey fixated a stationary target. Individual responses in the same monkey to either 100-ms or 1-s stimuli of the same light intensity were quite variable. ⋯ Like humans, the monkeys also exhibited consensual and binocular pupillary responses. Except for response latency, the pupillary responses in the two primate species are otherwise quite similar. Therefore any knowledge we gain about the neuronal substrate of the simian light reflex can be expected to have considerable relevance when extrapolated to humans.
-
Anatomical and physiological data have implicated the pretectal olivary nucleus (PON) as the midbrain relay for the pupillary light reflex in a variety of species. To determine the nature of the discharge of pretectal light reflex relay neurons, we recorded their activity in monkeys that were fixating a stationary spot while a full-field random-dot stimulus was flashed on for 1 s. Based on their discharge patterns, neurons in or near the PON came in two varieties. ⋯ A minority of our recorded pretectal neurons discharged a burst of spikes at both light onset and light offset. For most of these transient neurons, neither the burst rate nor the interburst rate was significantly related to light intensity. We conclude that these neurons are not involved in the light reflex but subserve some other pretectal function.