Journal of neurophysiology
-
Comparative Study
Kinematic and dynamic synergies of human precision-grip movements.
We analyzed the adaptability of human thumb and index finger movement kinematics and dynamics to variations of precision grip aperture and movement velocity. Six subjects performed precision grip opening and closing movements under different conditions of movement velocity and movement aperture (thumb and index finger tip-to-tip distance). Angular motion of the thumb and index finger joints was recorded with a CyberGlove and a three-dimensional biomechanical model was used for solving the inverse dynamics problem during precision grip movements, i.e., for calculating joint torques from experimentally obtained angular variations. ⋯ However, the adaptation to large aperture, achieved by an increase of the relative contribution of the proximal joints, was subject-invariant. At the level of movement dynamics, the adaptation of thumb-index finger movements to task constraints was similar among all subjects and required the linear scaling of joint torques, the synchronization of joint torques under high velocity conditions, and a flexible redistribution of joint torques between the proximal joint of the thumb and that of the index finger. This work represents one of the first attempts at calculating the joint torques during human precision-grip movements and indicates that the dynamic synergies seem to be remarkably simple compared with the synergies found for movement kinematics.
-
Comparative Study
Bimanual coordination during rhythmic movements in the absence of somatosensory feedback.
We investigated the role of somatosensory feedback during bimanual coordination by testing a bilaterally deafferented patient, a unilaterally deafferented patient, and three control participants on a repetitive bimanual circle-drawing task. Circles were drawn symmetrically or asymmetrically at varying speeds with full, partial, or no vision of the hands. Strong temporal coupling was observed between the hands at all movement rates during symmetrical drawing and at the comfortable movement rate during asymmetrical drawing in all participants. ⋯ The amplitudes and shapes of the two circles were less similar across limbs for the patients than the controls and the circles produced by the patients tended to drift in extrinsic space across successive cycles. These results indicate that somatosensory feedback is not critical for achieving temporal coupling between the hands nor does it contribute significantly to the disruption of asymmetrical coordination at faster movement rates. However, spatial consistency and position, both within and between limbs, were disrupted in the absence of somatosensory feedback.
-
Comparative Study
Augmented mechanical response of muscle thin-fiber sensory receptors recorded from rat muscle-nerve preparations in vitro after eccentric contraction.
Unaccustomed strenuous exercise, especially that from eccentric muscular work, often causes muscle tenderness, which is a kind of mechanical hyperalgesia. We developed an animal model of delayed-onset muscle soreness (DOMS) from eccentric muscular contraction (ECC) in rats and demonstrated the existence of muscle tenderness by means of behavioral pain tests and c-Fos protein expression in the spinal dorsal horn. The purpose of the present study was to examine whether the sensitivities of muscle thin-fiber sensory receptors to mechanical, chemical, and thermal stimuli were altered after repetitive ECC in a rat model of DOMS. ⋯ In addition, the total number of evoked discharges during a ramp mechanical stimulus, taken as an index of the magnitude of the mechanical response, nearly doubled in the ECC preparations compared with the CTR [24.7 spikes (IQR; 14.2-37.1 spikes) in the CTR preparation vs. 54.2 spikes (IQR; 24.3-89.0 spikes) in the ECC, P < 0.001]. In contrast, the numbers of discharges induced by chemical (pH 5.5, lactic acid, adenosine triphosphate, and bradykinin) and thermal (cold and heat) stimuli were not different between the two preparations. These results suggest that augmentation of the mechanical response in muscle thin-fiber sensory receptors might be related to the muscle tenderness in DOMS after ECC.