Journal of neurophysiology
-
Comparative Study
Stimulus for rapid ocular dominance plasticity in visual cortex.
Although it has been known for decades that monocular deprivation shifts ocular dominance in kitten striate cortex, uncertainty persists about the adequate stimulus for deprivation-induced losses of cortical responsiveness. In the current study we compared the effects of 2 days of lid closure and 2 days of monocular blur using an overcorrecting contact lens. ⋯ The quality rather than the quantity of retinal illumination is the key factor for ocular dominance plasticity. These data have implications for both the mechanism and treatment of amblyopia.
-
Comparative Study
Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia.
Systemic administration of resiniferatoxin (RTX), an ultrapotent capsaicin analogue, removes transient receptor potential vanilloid type 1 (TRPV1)-expressing afferent neurons and impairs thermal but not mechanical nociception in adult animals. In this study, we determined how loss of TRPV1-expressing sensory neurons alters the antinociceptive effect of mu opioids and mu opioid receptors in the spinal cord. The effect of morphine and (D-Ala2,N-Me-Phe4,Gly-ol5)-enkephalin (DAMGO) was measured by testing the paw mechanical withdrawal threshold in rats treated with RTX or vehicle. ⋯ The B(MAX) (but not K(D)) of [3H]-DAMGO binding and DAMGO-stimulated [35S]GTPgammaS activity in the dorsal spinal cord were significantly reduced in the RTX group. This study provides novel information that loss of TRPV1 afferent neurons eliminates presynaptic mu opioid receptors present on TRPV1-expressing afferent neurons but paradoxically potentiates the analgesic effect of mu opioid agonists. Mechano-nociception, transmitted through non-TRPV1 sensory neurons, is subject to potent modulation by mu opioid agonists.
-
Comparative Study
Inflammation-susceptible Lewis rats show less sensitivity than resistant Fischer rats in the formalin inflammatory pain test and with repeated thermal testing.
Comparisons between Lewis and Fischer inbred strains of rats are used frequently to study the effect of inherent differences in function of the hypothalamic-pituitary-adrenal axis on pain-relevant traits, including differential susceptibility to chronic inflammatory disease and differential responsiveness to analgesic drugs. Increasing use of genetic models including transgenic knockout mice and inbred strains of rodents has raised our awareness of, and the importance of, thorough characterization (or phenotyping) of the strains of rodents being compared. Furthermore, genetic variability in analgesic sensitivity is correlated with, and may be caused by, genetically determined baseline sensitivity. ⋯ Unexpectedly, the more inflammation-susceptible Lewis rats were less sensitive in the formalin inflammatory nociception test, and showed a significant decrease in sensitivity with repeated thermal nociceptive testing, whereas Fischer rats did not. These results affect the interpretation of previously observed results. Further study of the underlying mechanisms and the relevance to differential susceptibility to chronic inflammation is warranted.