Journal of neurophysiology
-
Injury to the superficial layers of cerebral cortex produces alterations in the synaptic responses of local circuits that promote the development of seizures. To further delineate the specific changes in synaptic strength that are induced by this type of cortical injury, whole cell voltage-clamp recordings were used to examine evoked and spontaneous synaptic events from layer V pyramidal cells in coronal slices prepared from surgically traumatized rat neocortices in which the superficial third of the cortex (layers I, II, and part of III) was removed. Slices from intact neocortices were used as controls. ⋯ EPSC and IPSC channel numbers and IPSC unit conductance did not differ between traumatized and intact slices. However, the mean unit conductance of EPSCs was higher (+25%) in traumatized slices. These findings suggest that acute injury to the superficial neocortical layers results in a disinhibition of cortical circuits that stems from a decline in GABA release likely due to the loss of superficial inhibitory interneurons and an enhancement of synaptic excitation consequent to an increase in the AMPA receptor unit conductance.
-
Recent studies have shown that the initial responses evoked by a stimulus in neurons of primary visual cortex are dominated by low spatial frequency information in the image, whereas finer spatial scales dominate later in the response. Such phenomena could arise from the dynamics of receptive field (RF) size at early stages of cortical processing. ⋯ The most pronounced changes are seen in the width and spatial period of the RFs, which decrease by 15% during the central 20 ms of the response. These results show a novel form of spatio-temporal inseparability in simple cells and are consistent with the notion of a coarse-to-fine processing of information in early visual cortex.
-
Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). ⋯ However, significant increases in GIRK channel density was found in Ts65Dn neurons. In normalized baclofen-induced GIRK current and GIRK current kinetics no difference was found between diploid and Ts65Dn neurons, which suggests unimpaired mechanisms of interaction between GIRK channel and GABA(B) receptor. These results indicate that increased expression of GIRK2 containing channels have functional consequences that likely affect the balance between excitatory and inhibitory neuronal transmission.
-
This study shows the neural representation of cat vocalizations, natural and altered with respect to carrier and envelope, as well as time-reversed, in four different areas of the auditory cortex. Multiunit activity recorded in primary auditory cortex (AI) of anesthetized cats mainly occurred at onsets (<200-ms latency) and at subsequent major peaks of the vocalization envelope and was significantly inhibited during the stationary course of the stimuli. The first 200 ms of processing appears crucial for discrimination of a vocalization in AI. ⋯ Sustained firing neurons in the posterior ectosylvian gyrus (EP) could discriminate, among others, by neural synchrony, temporal envelope alterations of the meow, and time reversion thereof. These findings suggest an important role of EP in the detection of information conveyed by the alterations of vocalizations. Discrimination of the neural responses to different alterations of vocalizations could be based on either firing rate, type of temporal response, or neural synchrony, suggesting that all these are likely simultaneously used in processing of natural and altered conspecific vocalizations.
-
Moderate cerebral hypothermia is consistently neuroprotective after experimental hypoxia-ischemia; however, its mechanisms remain poorly defined. Using a model of complete umbilical cord occlusion for 25 min in 0.7 gestation fetal sheep, we examined the effects of cerebral hypothermia (fetal extradural temperature reduced from 39.5 +/- 0.2 degrees C to <34 degrees C; mean +/- SD), from 90 min to 70 h after the end of the insult, on postocclusion epileptiform activity. ⋯ Hypothermia was associated with a marked reduction in numbers of epileptiform transients in the first 6 h, reduced amplitude of seizures, and reduced striatal neuronal loss. In conclusion, neuroprotection with delayed, prolonged head cooling after a severe asphyxial insult in the preterm fetus was associated with potent, specific suppression of epileptiform transients in the early recovery phase but not of numbers of delayed seizures.