Journal of neurophysiology
-
Intraspinal microstimulation (ISMS) through a single microelectrode can induce locomotion in cats spinalized at T(13) 1 wk before (untrained) or after 3-5 wk of treadmill training. Here we study the optimal parameters of ISMS and the characteristics of locomotion evoked. ISMS was applied in the dorsal region of segments L(3)-S(1) at different lateralities (midline to 2.5 mm) and after an intravenous injection of clonidine (noradrenergic agonist). ⋯ This suggests that sensory afferent pathways are involved in the production of locomotion by ISMS. Microinjections of yohimbine (noradrenergic antagonist) in L(3) and L(4) segments or a complete second spinal lesion at L(3)-L(4) abolished all locomotor activity evoked by ISMS applied at more caudal segments. Progressive dorsoventral spinal lesions at L(3) or L(4) and restricted ventral lesions at L(4) further suggest that the integrity of the ventral or ventrolateral funiculi as well as the L(3)-L(4) segments are critical for the induction of locomotion by ISMS at L(5) to S(1) or by DRS at these caudal segments.
-
Comparative Study
Psychophysical evidence for long-term potentiation of C-fiber and Adelta-fiber pathways in humans by analysis of pain descriptors.
Long-term potentiation of human pain perception (nociceptive LTP) to single electrical test stimuli was induced by high-frequency stimulation (HFS) of cutaneous nociceptive afferents. Numerical pain ratings and a list of sensory pain descriptors disclosed the same magnitude of nociceptive LTP (23% increase for >60 min, P < 0.001), whereas affective pain descriptors were not significantly enhanced. ⋯ The increased perception of the burning pain quality for >1 h after HFS is interpreted as a LTP-like facilitation of the conditioned cutaneous C-fiber pathway. Additionally, the increase of the stinging pain quality supplied evidence for facilitation of a sharpness-sensitive Adelta-fiber pathway.
-
THIP is a hypnotic drug, which displays a unique pharmacological profile, because it activates a subset of extrasynaptic gamma-aminobutyric acid type A (GABA(A)) receptors containing delta-subunits. It is important to study the physiology and pharmacology of these extrasynaptic receptors and to determine how THIP interacts with other hypnotics and anesthetics. Here, we study the modulation of the extrasynaptic response to THIP using three classes of GABA(A)-receptor ligands. ⋯ Our study shows that the extrasynaptic GABA(A) receptors responsible for the tonic THIP conductance likely do not contain alpha(1)-, alpha(2)-, alpha(3)-, and gamma(2)-subunits. Thus the tonic GABAergic conductance in the neocortex is presumably mediated by alpha(4)beta(2/3)delta receptors, which are likely to play a major role for neocortical excitability. Furthermore, our study has deepened the knowledge about the cellular actions of THIP as well as THIP's interactions with other hypnotics and anesthetics.