Journal of neurophysiology
-
The transient receptor potential vanilloid-1 (TRPV1) receptor is involved in peripheral and spinal nociceptive processing and is a therapeutic target for pain. We have shown previously that TRPV1 in the ventrolateral periaqueductal gray (VL-PAG) tonically contributes to brain stem descending antinociception by stimulating glutamate release into the rostral ventromedial medulla and off neuron activity. Because both opioid and vanilloid systems integrate and transduce pain sensation in these pathways, we studied the potential interaction between TRPV1 and mu-opioid receptors in the VL-PAG-rostral ventromedial medulla (RVM) system. ⋯ These effects were all antagonized by the TRPV1 and opioid receptor antagonists 5'-iodo-resiniferatoxin and naloxone, respectively, thus suggesting the existence of a TRPV1-mu-opioid interaction in the VL-PAG-RVM system. By using double immunofluorescence techniques, we found that TRPV1 and mu-opioid receptors are coexpressed in several neurons of the VL-PAG. These findings suggest that mu-receptor activation not only acts on inhibitory neurons to disinhibit PAG output neurons but also interacts with TRPV1 activation at increasing glutamate release into the RVM, possibly by acting directly on PAG output neurons projecting to the RVM.
-
Precise control of synaptic strength is critical for maintaining accurate network activity and normal brain functions. Several major brain diseases are related to synaptic alterations in the adult brain. Detailed descriptions of the normal physiological properties of adult synapses are scarce, mainly because of the difficulties in performing whole cell patch-clamp recording in brain slices from adult animals. ⋯ Changes in synaptic strength were estimated from the ratio of AMPAR to NMDAR evoked and spontaneous EPSCs (AMPAR/NMDAR ratio). Although both AMPAR and NMDAR EPSCs decreased over development, there was an increase of the AMPAR/NMDAR ratio that was linked to changes in NMDAR EPSC. Furthermore, distribution of the AMPAR/NMDAR ratio was more heterogeneous in MSNs from adults, suggesting that synaptic strength is continuously refined during life.