Journal of neurophysiology
-
The brain stem provides most of the noradrenaline (NA) present in the spinal cord, which functions to both increase spinal motoneuron excitability and inhibit sensory afferent transmission to motoneurons (excitatory postsynaptic potentials; EPSPs). NA increases motoneuron excitability by facilitating calcium-mediated persistent inward currents (Ca PICs) that are crucial for sustained motoneuron firing. Spinal cord transection eliminates most NA and accordingly causes an immediate loss of PICs and emergence of exaggerated EPSPs. ⋯ RX821001 had no effect in vitro even though it is an α(2) receptor inverse agonist. Our results suggest that after chronic spinal cord injury Ca PICs and spasms are facilitated, in part, by constitutive activity in α(1) adrenergic receptors. Additionally, peripherally derived NA (or similar ligand) activates both α(1) and α(2) adrenergic receptors, controlling PICs and EPSPs, respectively.
-
TNFα induces mechanical sensitization of rat masseter muscle nociceptors, which takes 2-3 h to manifest and is mediated through activation of P55 and P75 receptors. This study was undertaken to determine whether TNFα induces nociceptor mechanical sensitization through the release of other algogenic substances such as glutamate, prostaglandin E(2) (PGE(2)), and/or nerve growth factor (NGF), which have been shown to induce mechanical sensitization of muscle nociceptors. Masseter muscle homogenate levels of PGE(2) and NGF were measured 3 h after injection of TNFα (1 μg) or vehicle control using commercially available kits. ⋯ Injection of diclofenac partially reversed the TNFα-induced decreases in the mechanical threshold (MT) of masseter muscle nociceptors, whereas vehicle control, APV, and TrkA antibody did not significantly alter nociceptor MT. These results suggest that TNFα-induced mechanical sensitization of masseter muscle nociceptors is mediated in part by increased PGE(2) levels. The findings of this study support the hypothesis that TNFα induces a delayed mechanical sensitization of masseter muscle nociceptors indirectly by the release of PGE(2).
-
Electrically excitable cells have voltage-dependent ion channels on the plasma membrane that regulate membrane permeability to specific ions. Voltage-gated Ca(2+) channels (VGCCs) are especially important as Ca(2+) serves as both a charge carrier and second messenger. Zebrafish (Danio rerio) are an important model vertebrate for studies of neuronal excitability, circuits, and behavior. ⋯ Application of GABA/baclofen or serotonin produced a voltage-dependent inhibition while application of the mu-opioid agonist DAMGO resulted in a voltage-independent inhibition. Unlike in mammalian neurons, GPCR-mediated voltage-dependent modulation of I(Ca) appears to be transduced primarily via a cholera toxin-sensitive Gα subunit. These results provide the basis for using the zebrafish model system to understanding Ca(2+) channel function, and in turn, how Ca(2+) channels contribute to mechanosensory function.